全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于Gorenstein平坦模

Keywords: Gorenstein内射模,Gorenstein平坦模,维数

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究环与代数上的模结构与性质,采用同调方法研究了Gorenstein内射模和Gorenstein平坦模之间的关系,给出了Gorenstein平坦模的判定定理.同时,给出了理想与模的乘积的Gorenstein平坦维效和它们各自Gorenstein平坦维数之间的关系.

References

[1]  AUSLANDER M,SMALφS O.Preprojective modules over artin algebras[J].J Algera,1980,66:61-122.
[2]  XU Jin-zhong.Flat covers of modules,in:Lecture notes in nathematics[M].New York:Springr-Verlayg,1998.
[3]  CHRISENSEN L W.Gorenstein dimension,in:Lecture notes in mathematics[M].New York:Springre-Verlag,2000.
[4]  佟文庭.同调代数引论[M].北京:高等教育出版社,1998.
[5]  ENOCHS E,XU Jin-zhong.Gorenstein flat covers of modules over Gorenstein rings[J].J Algebra,1996,181:288-313.
[6]  周伯薰.同调代数[M].北京:科学出版社.1999.
[7]  HOLM H.Gorenstein homological dimensions[J].Journal of Pure and Applied Algebras,2004,189:167-193.
[8]  AUSLANDER M,REITEN I.Applications of contravariantly finite subcategories[J].A Dvances in Math,1991,86:111- 152.
[9]  AUSLANDER M,BRIDGER M.Stable module theory[J].Mem Amer Math Soc,1969,94:1-20
[10]  IGUSA K,SMALφS O,TODOROV G.Finite projectivity and contravariant finiteness[J].Proc Amer Math Soc,1990, 109:937-941.
[11]  AVRANOV L L,FOXBY H B.Ring homomorphism and finite Goenstein dimension[J].Proc London Moth Soc,1997, 75(2):241-270.
[12]  CH A.Weibel,An introduction to homological algebra,Cambridge studies in advanced Mathematics 38[M].Cambridge: Cambridge University Press,1994.
[13]  PIERE R.Associative algebras,Grad.Text in Math.88[M].New York:Springer-Verlag,1982.
[14]  AUSLANDER M,PLATZECK M I,TODOROV G.Homological theory of idempotent ideals[J].Transactions of the American Mathematical Society,1992,332(2):667-692.
[15]  Auslander M,SMALφS O.Almost split sequences in subcategories[J].J Algebra,1981,69:426-454.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133