全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

与异元奇素数对有关的Goldbach数数量的估算

Keywords: 异元奇素数对,孪生素数,Goldbach数,Chebyshev不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过研究异元奇素数对的分布,提出并证明了与这类奇素数对有关的Goldbach数数量的估算公式,即与异元奇素数对有关的、不大于2N的Goldbach数数量n(G(2n))的最保守估计为:当N充分大时,n(G(2n))>N(0.956/lnN-2/N)~2;于是,当N→∞时,n(G(2n))按此规律趋于无穷大.

References

[1]  陈景润,刘建民.Goldbach数的例外集合(Ⅳ)[J].数学季刊,1990,5(4):1-10.CHEN Jing-run,LIU Jian-min.The exceptional set of Goldbach numbers(Ⅳ)[J].Chinese Quarterly Journal of Mathematics, 1990,5(4):1-10.(in Chinese)
[2]  LI H.The exceptional set of Goldbach numbers[J].The Quarterly Journal of Mathematics,1999,50:471-482.
[3]  LI H.The exceptional set of Goldbach numbers(Ⅲ)[J].Acta Arithmetica,2000,92(1):71-88.
[4]  RAMACHANDRA K.On the number of Goldbach numbers in small intervals[J].Journal of Indian Mathematical Society, 1973,37:157-170.
[5]  PERELLI A,PINTZ J.On the exceptional set for Goldbach's problem in short intervals[J].Journal of London Mathematical Society,1993,47(1):41-49.
[6]  CHEN J.The exceptional set of Goldbach numbers(Ⅱ)[J].Scientia Sinica(Series A),1983,26(7):714-731.
[7]  陈景润,刘建民.Goldbach数的例外集合(Ⅲ)[J].数学季刊,1989,4(1):1-15.CHEN Jing-run,LIU Jian-min.The exceptional set of Goldbach numbers(Ⅲ)[J].Chinese Quarterly Journal of Mathematics, 1989,4(1):1-15.(in Chinese)
[8]  潘承洞,潘承彪.哥德巴赫猜想[M].北京:科学出版社,1981:279-280.
[9]  CHEN J,PAN C.The exceptional set of Goldbach numbers(I)[J].Scientia Sinica(Series A),1980,23(4):416-430.
[10]  MIKAWA H.On the exceptional set in Goldbach's problem[J].Tsukuba Journal of Mathematics,1992,16(2):513-543.
[11]  JIA C.Goldbach numbers in short intervals(Ⅰ)[J].Science in China(Series A),1995,38(4):385-406.
[12]  JIA C.Goldbach numbers in short intervals(Ⅱ)[J].Science in China(Series A),1995,38(5):513-523.
[13]  LI H.Goldbach numbers in short intervals[J].Science in China(Series A),1995,38(6):641-652.
[14]  涂象初,涂承宇,涂承嫒.关于广义孪生素数的几个结论[J].北京工业大学学报,2006,32(6):552-557.TU Xiang-chu,TU Cheng-yu,TU Cheng-yuan.Some conclusions about the generalized primes-twin and others[J]. Journal of Beijing University of Technology,2006,32(6):552-557.(in Chinese)
[15]  GOLDFELD D.The elementary proof of the prime number theorem:an history perspective,from number theory[M]. New York:Springer-Verlag,2003:179-181.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133