全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速取样示波器时基失真数学模型的研究与仿真

Keywords: 时基失真,时基失真修正算法,高速取样示波器,最小二乘法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决10GHz以上的高速取样示波器的时基失真修正问题,提高测量结果的准确性,参考基于最小二乘法的时基失真数学模型,对时基失真修正算法中输入信号相位的选取、信号的分组方式和谐波阶数的确定等内容进行了仿真研究,确定了输入信号相位为正交、信号分组为4组、谐波阶数为3时,时基失真的误差最小;将该结论应用到时基失真的修正算法中,仿真得到了修正后的平滑波形曲线.结果表明:与原始波形比较,算法有效地修正了由于时基失真造成的系统误差,验证了该结论的正确性和时基失真修正算法的有效性.

References

[1]  GYLES C.Repetitive waveform high frequency,high precision digitizer[J].IEEE Trans Instrum Meas,1989,38(4):917-919.
[2]  SCOTT W R,SMITH J.Error corrections for an automated time-domain network analyzer[J].IEEE Trans Instrum Meas,1986,35(9):300-303.
[3]  林茂六,张喆.高速采样示波器中的时基失真及其估计[J].计量学报,2004,24(3):266-269.LIN Mao-liu,ZHANG Zhe.The TBD introduction and estimation of high-speed sampling oscilloscope[J].ACTA Metrologica Sinica,2004,24(3):266-269.(in Chinese)
[4]  张喆,林茂六.一种计算时基失真估计不确定度的新方法[J].哈尔滨工业大学学报,2007,39(1):78-80.ZHANG Zhe,LIN Mao-liu.A new method for calculating an uncertainty of time-based distortion estimation[J].Journal of Harbin Institute of Technology,2007,39(1):78-80.(in Chinese)
[5]  梁志国,孟晓风.数字存储示波器时基失真与采样抖动的评价研究[J].计量学报,2008,28(4):358-364.LIANG Zhi-guo,MENG Xiao-feng.Study on evaluation of both time-base distortion and sampling jitter of digital storage oscilloscopes[J].Acta Metrologica Sinica,2008,28(4):358-364.(in Chinese)
[6]  WANG C M J,HALE P D,JARGON J A,et al.Sequential estimation of timebase corrections for an arbitrarily long waveform[J].IEEE Transactions on Instrumentation and Measurement,2012,61(10):2689-2694.
[7]  WANG C M J,HALE P D.Least-squares estimation of time-based distortion of sampling oscilloscopes[J].IEEE Transactions on Instrumentation and Measurement,1999,48(6):1324-1332.
[8]  VERSPECHT J.Accurate spectral estimation based on measurements with a distorted-time base digitizer[J].IEEE Trans Instrum Meas,1994,43(4):210-215.
[9]  VANDERSTEEN G,ROLAIN Y,SCHOUKENS J.An identification technique for data acquuition characterization in the presence of nonlinear distortions and time base distortions[J].IEEE Transactions on Instrumentation and Measurement.2001,50(5):1355-1363.
[10]  GUIILAUME P,PINTELON R,SCHOUKENS J.Nonparametric frequency response function based on nonlinear averaging techniques[J].IEEE Transactions on Instrumentation and Measurement,1992,41(6):739-746.
[11]  何丕雁,白泰礼.一种改进的正弦拟合时基失真估计算法[J].系统工程与电子技术,2003,25(3):359-361.HE Pei-yan,BAI Tai-li.An improved sine-fitting estimation method for time-base distortion[J].Systems Engineering and Electronics,2003,25(3):359-361.(in Chinese)
[12]  RETTIG J B,DOBOS L.Picosecond time interval measurements[J].IEEE Trans Instrum Meas,1995,44(4):284-287.
[13]  ROLAIN Y,SCHOUKENS J.Signal reconstruction for non-equidistant finite length sample sets:a“KIS”approach[J].IEEE Transactions on Instrumentation and Measurement,2002,47(5):1046-1052.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133