全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

改进型GappyPOD翼型反设计方法

DOI: 10.7527/S1000-6893.2013.0135, PP. 762-771

Keywords: 翼型,反问题,本征正交分解,快照空间,校正

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高基本Gappy本征正交分解(POD)翼型反设计方法的精度,在原始方法快照采样过程中,调整参数化方法,并用已产生翼型中压力分布最接近目标压力分布的翼型替换基础扰动翼型,形成最优快照替换采样法。在迭代求解阶段,根据迭代产生的压力分布与迭代产生的翼型实际压力分布之间的误差,引入校正快照,并据此调整目标压力分布,形成校正迭代法。实际算例表明,最优快照替换采样法所采集快照张成的空间较原始采样法更接近设计目标。而校正迭代法较原始迭代法能明显提高反设计精度。但最佳模态数量的选择对于GappyPOD翼型反设计方法仍然是一个难点。

References

[1]  Zhao S Y, Huang M K. Application of simulated annealing method and reduced order models based on POD to airfoil inverse design problems. Acta Aerodynamica Sinica, 2007, 25(2): 236-240. (in Chinese) 赵松原, 黄明恪. 模拟退火算法和降阶POD计算模态在翼型设计优化中的应用. 空气动力学学报, 2007, 25(2): 236-240.
[2]  Everson R, Sirovich L. The karhunen-loeve procedure for Gappy data. Journal of the Optical Society of American, 1995, 12(8): 1657-1664.
[3]  Sirovich L, Kirby M. Turbulence and dynamics of coherent structures. Part 1: coherent structures. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
[4]  Nathan E M, Lawrence S U. An application of gappy POD for subsonic cavity flow PIV data. Experiments in Fluids, 2007, 42(1): 79-91.
[5]  Daniele V, Georgr E K. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics, 2004, 519: 315-336.
[6]  Bui-Thanh T, Damodaran M, Willcox K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal, 2004, 42(8): 1501-1516.
[7]  Drela M. Xfoil: an analysis and design system for low Reynolds number airfoils. New York: Springer, 1989: 1-12.
[8]  Hicks R M, Henne P A. Wing design by numerical optimization. AIAA-1977-1247, 1977.
[9]  Sobieczky H. Parametric airfoil and wings. Notes on Numerical Fluid Mechanics, 1998, 68: 71-88.
[10]  Piegl L, Tiller W. The nurbs book. Heidelberg: Springer, 1997: 411-413.
[11]  Duan Y H, Cai J S, Liu Q H. Surrogate model based optimization for airfoil design. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 617-627. (in Chinese) 段焰辉, 蔡晋生, 刘秋洪. 基于代理模型方法的翼型优化设计. 航空学报, 2011, 32(4): 617-627.
[12]  Kulfan B M, Bussoletti J E. Fundamental parametric geometry representations for airfoil component shapes. AIAA-2006-6948, 2006.
[13]  Su W. Aerodynamic optimization design based on computational fluid dynamics and surrogate model. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2007. (in Chinese) 苏伟. 基于CFD技术和代理模型的气动外形优化设计方法研究. 西安: 西北工业大学航空学院, 2007.
[14]  Takanashi S. An iterative procedure for three-dimensional transonic wing design by the integral equation method. AIAA-1984-2166, 1984.
[15]  Hua J. Study of transonic airfoil and wing design. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 1989. (in Chinese) 华俊. 跨音速机翼和翼型的设计研究. 西安: 西北工业大学航空学院, 1989.
[16]  Van Egmond J A. Numerical optimization of target pressure distribution for subsonic and transonic airfoil design. AGARD CP-463 Reference 17, 1990.
[17]  Van den Dam R F, Van Egmond J A, Sloof J W. Optimization of target pressure distributions. AGARD-780 Reference 3. 1990.
[18]  Van den Dam R F. Constrained spanload optimization for minimum drag of multi-lifting surface configuration. AGARD-463 Reference 16, 1990.
[19]  Holmes P, Lumley J L, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge: Cambridge University Press, 1996: 86-113.
[20]  Legresley P, Alonso J. Investigation of non-linear projection for POD based reduced order models for aerodynamics. AIAA-2001-926, 2001.
[21]  Fukanaga K. Introduction to statistical pattern recognition. New York: Academic Press, 1990: 399-440.
[22]  Sirvoich L, Kirby M. Low-dimensional procedure for the characterization of human face. Journal of the Optical Society for America, 1987, 4(3): 519-524.
[23]  Patrick A, Legresley P, Alonso J. Airfoil design optimization using reduced order models based on proper orthogonal decomposition. AIAA-2000-2545, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133