全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

空间绳系机器人逼近目标协调控制方法

DOI: 10.7527/S1000-6893.2013.0208, PP. 1222-1231

Keywords: 空间绳系机器人,LQR算法,协调控制,模拟退火,时间延迟

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了节省空间绳系机器人的末端执行装置在逼近目标卫星过程中推力器所使用的燃料,本文提出一种利用推力器、反作用轮及空间系绳的协调控制方法。首先利用二次型最优控制器(LQR)算法计算出末端执行装置逼近目标所需的理想轨道控制力,然后利用模拟退火算法将所需轨道控制力优化分配到推力器及空间系绳,同时利用时间延迟算法通过反作用轮补偿空间系绳产生的姿态干扰力矩。仿真结果表明,利用该协调控制方法能显著节省末端执行装置上推力器的燃料消耗,有效抑制空间系绳协调控制力产生的姿态干扰,使末端执行装置保持相对稳定的姿态。

References

[1]  Yuya N, Fumiki S, Shinichi N. Guidance and control of “tethered retriever” with collaborative tension-thruster control for future on-orbit service missions[C]. The 8th International Symposium on Artificial Intelligence: Robotics and Automation in Space-ISAIRAS, Munich, Germany, September 5-8, 2005.
[2]  Masahiro N, Nenchev D N, Masaru U. Tethered robot casting using a spacecraft-mounted manipulator[J]. Journal of Guidance, Control and Dynamics, 2001, 24(4): 827-833.
[3]  Masahiro N. Attitude control of a tethered space robot by link motion under microgravity[C]. Proceedings Of The 2004 IEEE International Conference On Control Applications, Taipei, Taiwan, September 2-4, 2004.
[4]  Godard, Kumar K D, Tan B. Fault-tolerant stabilization of a tethered satellite system using offset control[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 1070-1084.
[5]  朱仁璋. 航天器交会对接技术[M]. 北京:国防工业出版社, 2007: 23-31.
[6]  Zhu Renzhang. Rendezvous and Docking Technique of Spacecraft [M]. Beijing: National Defense Industry Press, 2007: 23-31. (in Chinese)
[7]  Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4): 541-553.
[8]  黄圳圭. 航天器姿态动力学[M]. 长沙:国防科技大学出版社, 1997: 169-172.
[9]  Huang Zhengui. Attitude Dynamics of Spacecraft [M]. National University of Defence Technology Press, 1997: 169-172. (in Chinese)
[10]  陈刚, 万自明, 徐敏等. 遗传算法在航天器轨迹优化中的应用[J]. 弹道学报, 2006, 18(1): 1-5.
[11]  Chen Gang, Wan Zi-ming, Xu Min, et al. Overview of Spacecraft Trajectory Optimization Using Genetic Algorithm[J]. Journal of Ballistics, 2006, 18(1): 1-5. (in Chinese)
[12]  Luo Ya-zhong, Tang Guo-jin, Li Hai-yang. Optimization of multiple-impulse minimum-time rendezvous with impulse constraints using a hybrid genetic algorithm[J]. Aerospace Science and Technology, 2006, 10: 534-540.
[13]  Gianmarco R, German O. Ant colony algorithms for two-impulse interplanetary trajectory optimization[J]. Journal Of Guidance, Control, And Dynamics, 2006, 26(6): 1440-1443.
[14]  Luo Ya-zhong, Tang Guo-jin. Spacecraft optimal rendezvous controller design using simulated annealing[J]. Aerospace Science And Technology, 2005, 9: 732-737.
[15]  朱建丰,徐世杰. 基于自适应模拟退火遗传算法的月球软着陆轨道优化[J]. 航空学报, 2007, 28(4): 806-812.
[16]  Youcef-Toumi K, Reddy S. Analysis of linear time invariant systems with time delay[J]. ASME Journal Of Dynamic Systems, Measurement And Control, 1992, 114(4):544-555.
[17]  Osamu M, Saburo M. Coordinated control of tethered satellite cluster systems[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August 6-9, 2001.
[18]  Chang I, Chung S J. Bio-Inspired adaptive cooperative control of heterogeneous robotic networks[C]. AIAA Guidance, Navigation, and Control Conference, Chicago, USA, August 10-13, 2009.
[19]  Zhu Jianfeng, Xu Shijie. Optimization of Lunar Soft Landing Trajectory Based on Adaptive Simulated Annealing Genetic Algorithm[J]. Acta Aeronautica Et Astronautica Sinica, 2007, 28(4): 806-812. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133