Wang G L, Qu Y, Chen D J. Impact of hypersonic aerocraft thermal protection system material surface catalyticity property on aerodynamic heating[C]//1st Modern Aerodynamics and Aerothermodynamics Meeting of China, 2006: 346-350. (in Chinese) 王国林, 曲杨, 陈德江, 等. 高超声速飞行器热防护系统防热材料表面催化特性对气动加热影响的研究[C]//中国第一届近代空气动力学与气动热力学会议, 2006: 346-350.
[2]
Chen D J, Liu W Q, Wang G L, et al. Study on thermal protection material surface catalyticity property testing technique[C]//13th Hypersonic Aerodynamics/Aerothermodynamics Academic Communication, 2006: 206-210. (in Chinese) 陈德江, 刘伟强, 王国林, 等. 防热材料表面催化特性试验技术研究[C]//全国第十三届高超声速气动力(热)学术交流会议论文集, 2006: 206-210.
[3]
Chen H B. Catalyticity and oxidation properties of ZrB2 based ultrahigh temperature ceramics[D]. Harbin: School of Aeronautics, Harbin Institute Technology, 2011. (in Chinese) 陈红波. ZrB2基超高温陶瓷材料催化/氧化性能研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2011.
[4]
Scatteia1 L, Alfano D, Monteverde F, et al. Effect of the machining method on the catalycity and emissivity of ZrB2 and ZrB2-HfB2-based ceramics[J]. Journal of American Ceramic Society, 2008, 91(5): 1461-1468.
[5]
Scatteia L, Alfano D, Balat M, et al. Characterization of emissivity and surface catalycity of ultra high temperature ceramics and C/SiC composites for space applications[C]//58th International Astronautical Congress, Hyderabad(Inde), 2007: C2.3.05, 1-7.
[6]
Marschall J, Pejakovic D A, Fahrenholtz W G, et al. Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh temperature ceramics[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(4): 559-572.
[7]
Li N, Hu P, Zhang X H, et al. Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2-SiC composites at 1500 ℃[J]. Corrosion Science, 2013, 73(8): 44-53.