全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

气动弹性计算中网格变形方法研究进展

DOI: 10.7527/S1000-6893.2013.0423, PP. 303-319

Keywords: 气动弹性,径向基函数,网格变形,弹簧法,弹性体法,背景网格

Full-Text   Cite this paper   Add to My Lib

Abstract:

网格变形是气动弹性计算中实现计算网格随运动边界变形的主要方法。在总结目前网格变形方法发展现状的基础上,对近几年常用的网格变形方法,即弹簧法、弹性体法、超限插值法、Delaunay背景网格法、径向基函数插值法和温度体法等做了简要的总结。根据各方法构建模型的不同,将它们分成物理模型法、数学插值法和混合方法3类,简要介绍了各方法的基本思想和研究进展,重点比较了各方法的网格变形特性(变形能力、变形质量和变形效率)和优缺点。总结了当前流场边界与结构边界的数据传递方法,对当前气动弹性计算中遇到的网格变形的难点问题作了简要评述并对未来网格变形方法的发展方向进行了探讨。

References

[1]  Zhang W W, Wang B B, Ye Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.
[2]  Menter F R, Kuntz M, Bender R. A scale-adaptive simulation model for turbulent flow predictions, AIAA-2003-0767[R]. Reston: AIAA, 2003.
[3]  Jaw L C. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step, ASME Paper, GT-2005-68625[R]. Reno: ASME, 2005.
[4]  Xiao Z X, Liu J, Luo K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1): 107-125.
[5]  Northeast Institute of Technology. The analyze and experimental study of creep feed grinding[J]. Jichuang, 1979(5): 8-15. (in Chinese) 东北工学院. 缓进给强力磨削过程的分析和试验研究[J]. 机床, 1979(5): 8-15.
[6]  Wei X K, Feng Y, Liu F, et al. Development strategy and key prognostics health management technologies for military aero-engine in China[J]. Journal of Aerospace Power, 2011, 26(9): 2107-2115. (in Chinese) 尉询楷, 冯悦, 刘芳, 等. 军用航空发动机PHM发展策略及关键技术[J]. 航空动力学报, 2011, 26(9): 2107-2115.
[7]  Wang G. New type of grid generation technique together with the high efficiency and high accuracy scheme researches for complex flow simulation[D]. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2006. (in Chinese) 王刚. 复杂流动的网格技术及高效、高精度算法研究[D]. 西安: 西北工业大学航空学院, 2006.
[8]  Schweitzer J K, Anderson J S, Scheugenpflug H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[C]//ⅩⅦ International Symposium on Air Breathing Engines (ISABE), 2005.
[9]  Lynch C E, Smith M J. Hybrid RANS-LES turbulence models on unstructured grids, AIAA-2008-3854[R]. Reston: AIAA, 2008.
[10]  Sitaraman J, Baeder J D, Chopra I. Validation of UH-60A rotor blade aerodynamic characteristics using CFD[C]//Proceedings of the 59th Annual Forum of the AHS, 2003: 112-119.
[11]  Ren J X, Kang R K, Shi X K. Grinding of difficult-to-cut material[M]. Beijing: National Defense Industrial Press, 1999: 139-195. (in Chinese) 任敬心, 康仁科, 史兴宽. 难加工材料的磨削[M]. 北京: 国防工业出版社, 1999: 139-195.
[12]  Zhang W W, Wang B B, Ye Z Y. High efficient numerical method for LCO analysis in transonic flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 42(6): 1023-1033. (in Chinese) 张伟伟, 王博斌, 叶正寅. 跨音速极限环型颤振的高效数值分析方法[J]. 力学学报, 2011, 42(6): 1023-1033.
[13]  Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models, AIAA-2005-1095[R]. Reston: AIAA, 2005.
[14]  Litt J S, Simon D L, Garg S, et al. A survey of intelligent control and health management technologies for aircraft propulsion systems, NASA/TM-2005-213622, ARL-TR-3413[R]. Cleveland, OH: NASA, 2005.
[15]  Wu X T, Moog C H, Hu Y M. Singular perturbation approach to moving mass control of buoyancy-driven airship in 3-D space[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(4): 343-352.
[16]  McKinney R G, Sepulveda D, Sowa W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[17]  Krishnan V, Squires K D, Forsythe J R. Prediction of the flow around a circular cylinder at high Reynolds number, AIAA-2006-0901[R]. Reston: AIAA, 2006.
[18]  Snyder T S, Stewart J F, Stoner M D, et al. Application of an advanced CFD-based analysis system to the PW6000 combustor to optimize exit temperature distribution: Part Ⅱ-comparison of predictions to full annular rig test data, ASME Paper, GT-2001-0064[R]. New Orleans: ASME, 2001.
[19]  Jiang C H, Sun Z Y, Wang X. Critical technologies for aero-engine prognostics and health management systems development[J]. Journal of Aerospace Power, 2009, 24(11): 2589-2594.(in Chinese) 姜彩虹, 孙志岩, 王曦. 航空发动机预测健康管理系统设计的关键技术[J]. 航空动力学报, 2009, 24(11): 2589-2594.
[20]  Xiao Z X, Liu J, Huang J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136.
[21]  Kobayashi T, Simon D L. Integration of on-line and off-line diagnostic algorithms for aircraft engine health management[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(4): 986-993.
[22]  Michael F, Doug T, Richard S, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
[23]  Vatsa V N, Lockard D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications, AIAA-2010-4001[R]. Reston: AIAA, 2010.
[24]  Simon D L, Garg S. Optimal tuner selection for Kalman filter-based aircraft engine performance estimation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 031601.1-031601.10.
[25]  Zhang W, Zhang W W, Quan J G, et al. Gust alleviation of transonic wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969. (in Chinese) 张慰, 张伟伟, 全景阁, 等. 跨音速机翼阵风减缓研究[J]. 力学学报, 2012, 44(6): 962-969.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133