全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

飞行器任务规划技术综述

DOI: 10.7527/S1000-6893.2013.0500, PP. 593-606

Keywords: 飞行器,任务规划,协同,战术动作,航线,飞行轨迹

Full-Text   Cite this paper   Add to My Lib

Abstract:

任务规划是各类飞行器尤其是军用飞行器成功遂行任务的有效支撑和重要保证。首先,介绍了飞行器任务规划的基本概念;其次,系统地分析和梳理了任务规划技术的体系结构,从研究方法及对象的角度,将其归纳为面向多飞行器任务分配及协同的行动规划、面向飞行器战术动作实施方法设计的战术动作规划和面向飞行路径生成的航线/轨迹规划3个层次;随后,阐述了国内外飞行器任务规划各层次的研究现状,在问题建模与求解上所形成的代表性方法及其特点,以及飞行器任务规划在军事领域的应用现状;最后,论述了飞行器任务规划的关键技术及发展趋势。

References

[1]  Li Z F. Special wind tunnel testing technology[M]. Beijing: Aviation Industry Press, 2010: 562-563.(in Chinese) 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 562-563.
[2]  Gao G H. Research on multi-path planning problem in large area[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 1999.(in Chinese) 高国华. 大范围多路径规划问题研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 1999.
[3]  Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
[4]  Murayama M, Togashi F, Nakahashi K. Simulation of aircraft response to control surface deflection using unstructured dynamic grids, AIAA-2002-2940[R]. Reston: AIAA, 2002.
[5]  Yong E M, Chen L, Tang G J. Survey of aircraft trajectory optimization methods[J]. Journal of Astronautics, 2008, 29(2): 398-406. (in Chinese) 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 398-406.
[6]  Huang G Q, Lu Y P, Nan Y. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Sci China Tech Sci, 2012, 42(9): 1016-1036. (in Chinese) 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学, 2012, 42(9): 1016-1036.
[7]  Yang K, Sukkarieh S, Kang Y. Adaptive nonlinear model predictive path tracking control for a fixed-wing unmanned aerial vehicle, AIAA-2009-5622[R]. Reston: AIAA, 2009.
[8]  Schütte A, Einarsson G, Raichle A, et al. Prediction of the unsteady behavior of maneuvering aircraft by CFD aerodynamic,flight-mechanic and aeroelastic coupling, NATO RTO-MP-AVT-123-P-11[R]. Neuilly sur Seine, France: NATO Research and Technology Organization, 2005.
[9]  Zhang Y, Chen J, Shen L C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4): 1038-1056.
[10]  Huntington G T. Advancement and analysis of Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusettes Institute of Technology, 2007.
[11]  Zhang Y, Chen J, Shen L C. Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 536-552.
[12]  Zhang Y, Zhang W P, Chen J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1240-1251. (in Chinese) 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251.
[13]  Yong E M, Tang G J, Chen L. Rapid trajectory optimization [JP2]for hypersonic reentry vehicle via Gauss pseudospectral[JP] method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772. (in Chinese) 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[14]  Liu H F, Chen S F, Shen L C, et al. Tactical trajectory planning for stealth unmanned aerial vehicle to win the radar game[J]. Defence Science Journal, 2012, 62(6): 375-381.
[15]  Chen S F, Liu H F, Shen L C, et al. Penetration trajectory planning based on radar tracking features for UAV[J]. Aircraft Engineering and Aerospace Technology, 2012, 85(1): 62-71.
[16]  Milam M B. Real-time optimal trajectory generation for constrained dynamical systems[D]. Pasadena: California Institute of Technology, 2003.
[17]  Boelens O J, Prananta B B, Soemrwoto B I. Towards an aero-servo-elastic simulation capability for high-performance fighter aircraft, NATO RTO-MP-AVT-123-P-30[R]. Neuilly sur Seine, France: NATO Research and Technology Organization, 2005.
[18]  Schütte A, Einarsson G. Numerical simulation of maneuvering aircraft by aerodynamic flight-mechanic and structural mechanics coupling[J]. Journal of Aircraft, 2009, 46(1): 53-64.
[19]  McDaniel D R, Sears D R, Tuckey T R, et al. Aerodynamic control surface implementation in Kestrel v2.0, AIAA-2011-1175[R]. Reston: AIAA, 2011.
[20]  Morton S A, Eymann T A, Lamberson S, et al. Relative motion simulations using an overset multimesh paradigm with Kestrel v3, AIAA-2012-0712[R]. Reston: AIAA, 2012.
[21]  Green B E. Analysis of the stability and control characteristics of the F/A-18E super hornet using the Kestrel CFD flower solver, AIAA-2012-0715[R]. Reston: AIAA, 2012.
[22]  Cummings R M, Schütte A. An integrated computational/experimental approach to UCAV stability and control estimation: overview of NATO RTO AVT-161, AIAA-2010-4392[R]. Reston: AIAA, 2010.
[23]  Frazzoli E. Robust hybrid control for autonomous vehicle motion planning[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001.
[24]  Air force mission support system (AFMSS)[EB/OL]. (1999-01-09)[2012-11-07].
[25]  AN-SYQ-21 Tactical automated mission planning system (TAMPS)[EB/OL]. (1999-01-11) [2012-11-07].
[26]  htm.
[27]  AN/TYQ-77 Aviation mission planning system (AMPS)[EB/OL]. (2011-07-07) [2012-11-07].
[28]  tyq-77.htm.
[29]  Joint mission planning system[EB/OL]. (2011-07-07) [2012-11-07].
[30]  Tao Y, Fan Z L, Wu J F. CFD based virtual flight simulation of square cross-section missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 169-176. (in Chinese) 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2): 169-176.
[31]  Da X Y, Tao Y, Zhao Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 977-983.(in Chinese) 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6): 977-983.
[32]  Leavitt C A. Real-time in-flight planning[C]//Proceedings of the IEEE 1996 National Aerospace and Electronics Conferenc, 1996, 1: 83-89.
[33]  F-16 AFTI Advanced fighter technology integration[EB/OL]. [2012-11-07].
[34]  Zhang Y. Research on air-to-ground attack trajectory planning for combat aircraft[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2012. (in Chinese) 张煜. 作战飞机空对地攻击轨迹规划技术研究[D]. 长沙: 国防科学技术大学机电工程与自动化学院, 2012.
[35]  HELIPSYS[EB/OL]. [2013-12-09].
[36]  Li X L, Yang Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 453-462.(in Chinese) 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3): 453-462.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133