全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

基于POD方法的弯曲扩压通道分离流控制的时空特性分析

DOI: 10.7527/S1000-6893.2013.0453, PP. 921-932

Keywords: 本征正交分解,模态分析,非定常,流动分离,脉冲射流

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了分析一种运用于压气机内分离流控制的无源脉冲射流控制技术的特点,基于弯曲扩压通道试验模型进行了脉冲射流控制的试验和数值模拟研究,结果均表明当射流频率接近通道内分离涡主频时控制效果最为明显;引入了本征正交分解(POD)技术对无控状态下通道内流场结构进行分析,得到了POD各阶模态的流动结构特征。在此基础上对比分析了定常及非定常控制特点,结果表明非定常控制方式主要是重分配各阶模态之间的能量,有选择性地强化或削弱某阶模态;定常射流控制则是整体削弱高阶模态,压制通道内复杂流动现象;合理地构建脉冲射流可使能量从高阶模态向平均流模态进行转移,能量的转移通过空间流场结构的重构和模态时间演化特性的序化实现。最后针对POD分析结果进行了验证性试验研究,试验结果部分反映了时空特性的变化规律,提升了POD分析结果的可信度。

References

[1]  Rivir R B, Sondergaard R, Bons J P, et al. Passive and active control of separation in gas turbines, AIAA-2000-2235. Reston: AIAA, 2000.
[2]  Greenblatt D, Wygnanski I J. The control of flow separation by periodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7): 487-545.
[3]  Zhang P F, Wang J J, Feng L H. Review on the zero-net-mass-flux jet and the application in separation flow control[J]. Science in China Series E: Technological Sciences, 2008, 38(3): 321-349. (in Chinese) 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学 E辑: 技术科学, 2008, 38(3): 321-349.
[4]  Gmelin C, Zander V, Huppertz A, et al. Active flow control concepts on a highly loaded subsonic compressor cascade: resume of experimental and numerical results, ASME Paper, GT-2011-46468. Vancouver: ASME, 2011.
[5]  Zheng X Q, Zhou X B, Zhou S. Investigation on a type of flow control to weaken unsteady separated flows by unsteady excitation in axial flow compressors[J]. Journal of Turbomachinery, 2005, 127(7): 489-496.
[6]  Zheng X Q, Zhou S, Lu Y J, et al. Flow control of annular compressor cascade by synthetic jets[J]. Journal of Turbomachinery, 2008, 130(2): 021018-1-7.
[7]  Lumley J L. The structure of inhomogeneous turbulent flows[J]. Atmospheric Turbulence and Wave Propagation, 1967: 166-178.
[8]  Aubry N, Holmes P, Lumley J L. The dynamic of coherent structures in the wall region of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1988, 192(1): 115-173.
[9]  Ma X, Karniadakis G E. A low-dimensional model for simulating three-dimensional cylinder flow[J]. Journal of Fluid Mechanics, 2002, 458(1): 181-190.
[10]  Fan C Q, Li X W. Proper orthogonal decomposition method for flow analysis of multi element airfoil[J]. Journal of Shanghai University: Natural Science, 2012, 18(1): 76-82. (in Chinese) 范晨麒, 李孝伟. 基于本征正交分解方法的多段翼型流动分析[J].上海大学学报: 自然科学版, 2012, 18(1): 76-82.
[11]  Cizmas P, Palacios A. Proper orthogonal decomposition of turbine rotor-stator interaction[J]. Journal of Propulsion Power, 2003, 19(2): 268-281.
[12]  Feng L H, Wang J J, Pan C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control[J]. Physics of Fluid, 2011, 23: 014106.
[13]  Zhu J F, Huang G P, Fu X, et al. Technology investigation of controlling flow separation by micro-pulsed-jet without external device[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1757-1767. (in Chinese) 朱剑锋, 黄国平, 傅鑫, 等. 一种控制气流分离的无源微脉冲射流射流技术研究[J]. 航空学报, 2013, 34(8): 1757-1767.
[14]  Huang G P, Chen J, Xia C, et al. Passive pulse ejector for inhibiting blade back separation of air compressor: China. ZL200810195408.3. 2011-10-30.(in Chinese) 黄国平, 陈杰, 夏晨, 等. 抑制压气机叶背分离的无源脉冲射流器:中国. ZL200810195408.03.2011-10-30.
[15]  Chatterjee A. An introduction to the proper orthogonal decomposition[J]. Current Science: Computational Science, 2000, 78(7): 809-817.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133