全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算

DOI: 10.7527/S1000-6893.2013.0519, PP. 2426-2437

Keywords: 旋翼,气动弹性载荷,新型桨尖,计算流体力学,计算结构动力学,松耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高旋翼非定常气动弹性载荷的分析精度,在刚性旋翼计算流体力学(CFD)方法中引入计算结构动力学(CSD)方法,建立了一套适合于新型桨尖旋翼气动弹性载荷分析的CFD/CSD耦合方法。旋翼流场分析采用Navier-Stokes/Euler方程作为控制方程,围绕旋翼生成运动嵌套网格。在流场求解中,采用双时间法推进,通量计算采用Jameson中心格式,并采用B-L(Baldwin-Lomax)湍流模型。基于Hamilton变分原理和中等变形梁理论开展桨叶弹性运动变形分析,并发展了一套具有任意转角梁单元的新方法以提高新型桨尖旋翼的动力学分析精度。采用基于代数变换方法的网格变形策略,建立了一套CFD/CSD松耦合方法,桨叶运动变形和旋翼气动力信息通过流固交接面传递。首先分别对CSD和CFD模块进行了验证,然后计算了UH-60A旋翼在高速前飞状态下的气动弹性载荷,并与试验值进行了对比,最后重点对旋翼桨尖形状进行了参数分析。计算结果表明,相比于升力线理论和刚性旋翼CFD方法,CFD/CSD耦合方法可以显著提高旋翼非定常气动弹性载荷的分析精度,并能更准确地反映新型桨尖旋翼的气动弹性耦合效应;同时采用后掠桨尖在桨叶前行侧30°~90°方位角范围可以显著降低激波强度,有利于改善旋翼的气动特性。

References

[1]  Xiao Y, Xu G H, Shi Y J. Analysis of rotor airloads based on CFD/CA loose coupling[C]//Proceedings of the 2nd Annual Forum of the Asian/Australian Rotorcraft Forum and the 4th International Basic Research Conference on Rotorcraft Technology, 2013: 429-438.
[2]  Datta A, Sitaraman J, Chopra I, et al. CFD/CSD prediction of rotor vibratory loads in high-speed flight[J]. Journal of Aircraft, 2006, 43(6): 1698-1709.
[3]  Bousman W G. Aerodynamic characteristics of SC1095 and SC1094R8 airfoils, NASA TP-2003-212265[R].Washington, D. C.: NASA, 2003.
[4]  Conlisk A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Science, 2001, 37(5): 419-476.
[5]  Datta A, Chopra I. Prediction of the UH-60A main rotor structural loads using computational fluid dynamics/comprehensive analysis coupling[J]. Journal of the American Helicopter Society, 2008, 53(4): 351-365.
[6]  Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(3): 203-211. (in Chinese) 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211.
[7]  Brocklehurst A, Barakos G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences, 2013, 56: 35-74.
[8]  Tung C, Caradonna F X, Johnson W. The prediction of transonic flows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986, 32(7): 4-9.
[9]  Potsdam M, Yeo H, Johnson W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(5): 732-742.
[10]  Ahmad J U, Chaderjian N M. High-order accurate CFD/CSD simulation of the UH-60 rotor in forward flight, AIAA-2011-3186[R]. Reston: AIAA, 2011.
[11]  Wang H. Numerical simulation for the flowfield of new-tip rotors with effect of blade elasticity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) 王海. 计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究[D]. 南京: 南京航空航天大学, 2010.
[12]  Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flowfield of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21. (in Chinese) 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.
[13]  Meakin R L. A new method for establishing intergrid communication among systems of overs grids, AIAA-1991-1586[R]. Reston: AIAA, 1991.
[14]  Xu G, Zhao Q J, Wang B, et al. Prediction on aerodynamic performance of advanced helicopter rotor in hover[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1723-1732. (in Chinese) 徐广, 招启军, 王博, 等. 先进直升机旋翼悬停状态气动性能计算[J]. 航空学报, 2010, 31(9): 1723-1732.
[15]  Yuan K, Friedmann P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips, NASA CR-4665[R]. Washington, D. C.: NASA, 1995.
[16]  Panda B. Assembly of moderate-rotation finite elements used in helicopter rotor dynamics[J]. Journal of the American Helicopter Society, 1987, 32(4): 63-69.
[17]  Xie L, Xu M, An X M, et al. Research of mesh deforming method based on radial basis function and nonlinear aeroelastic simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511. (in Chinese) 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511.
[18]  Xu M, An X M, Chen S L. CFD/CSD coupling numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 33-37. (in Chinese) 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1): 33-37.
[19]  Hopkins A S, Ormiston R A. An examination of selected problems in rotor blade structural mechanics and dynamics[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society, 2003: 104-119.
[20]  Davis S J. Predesign study for a modern 4-bladed rotor for the RSRA, NASA CR-166155[R]. Washington, D. C.: NASA, 1981.
[21]  Hamade K S, Kufeld R M. Modal analysis of UH-60A instrumented rotor blades, NASA TM-4239[R]. Washington, D. C.: NASA, 1990.
[22]  Pomin H, Wagner S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.
[23]  Zhao Q J, Xu G H. Effects of swept blade tip on flowfield and aerodynamic characteristics of rotor[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(5): 706-712. (in Chinese) 招启军, 徐国华. 桨尖后掠对旋翼流场和气动特性的影响[J]. 南京航空航天大学学报, 2012, 44(5): 706-712.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133