全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

几何非线性机翼本征梁元素模型的高效化改进

DOI: 10.7527/S1000-6893.2013.0233, PP. 1309-1318

Keywords: 柔性机翼,几何非线性,结构动力学,空间缩聚,雅可比矩阵,高效性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Hodges等提出的时间-空间离散化的几何精确非线性本征梁通用模型处理柔性机翼结构动力学问题时,当离散化的节点数增大时,该方法的未知数数量成倍地增长,而且方程组是严重病态的,因此数值模拟计算的速度非常缓慢。针对机翼中最常见的悬臂梁结构,根据空间离散化的边界条件,提出了空间缩聚法把空间离散差分方程缩聚为常系数矩阵格式,得到了只与时间相关的微分方程组,进一步推导得到了该方程组的雅可比矩阵,因而大大减少了方程组的数量以及求解过程的循环和迭代步数。采用Gear方法分别求解了原始的本征梁元素模型和本文提出的缩聚模型,结果表明空间缩聚模型在相同条件下可提高运算速度约5.1倍,而且对不同类型的外载荷都具有较好的通用性、稳定性和高效性。

References

[1]  Nickol C L, Guynn M D, Kohout L L, et al. High altitude long endurance UAV analysis of alternatives and technology requirements development. NASA/TP-2007-214861, 2007.
[2]  Noll T E, Ishmael S D, Henwood B, et al. Technical findings, lessons learned, and recommendations resulting from the Helios prototype vehicle mishap. RTO-MP-AVT-145, 2007.
[3]  Hodges D H. A mixed variational formulation based on exact intrinsic equation for dynamics of moving beams. International Journal of Solids and Structures, 1990, 26(11): 1253-1273.
[4]  Hodges D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA Journal, 2003, 41(6): 1131-1137.
[5]  Sotoudeh Z, Hodges D H. Nonlinear aeroelastic analysis of joined-wing aircraft with intrinsic equations. AIAA-2009-2464, 2009.
[6]  Sotoudeh Z, Hodges D H, Chang C S. Validation studies for aeroelastic trim and stability analysis of highly flexible aircraft. Journal of Aircraft, 2010, 47(4): 1240-1247.
[7]  Cesnik C E S, Brown E L. Modeling of high aspect ratio active flexible wings for roll control. AIAA-2002-1719, 2002.
[8]  Su W H. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft. Ann Arbor: University of Michigan, 2008.
[9]  Palacios R, Cesnik C E S. Geometrically nonlinear theory of composite beams with deformable cross sections. AIAA Journal, 2008, 46(2): 439-450.
[10]  Cesnik C E S, Senatore P J, Su W H, et al. X-HALE: a very flexible UAV for nonlinear aeroelastic tests. AIAA-2010-2715, 2010.
[11]  Palacios R, Murua J, Cook R. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft. AIAA Journal, 2010, 48(11): 2648-2659.
[12]  Zhang J, Xiang J W. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1569-1582. (in Chinese) 张健, 向锦武. 柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性. 航空学报, 2011, 32(9): 1569-1582.
[13]  Pan D, Wu Z G, Yang C, et al. Nonlinear flight load analysis and optimization for large flexible aircraft. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2146-2151. (in Chinese) 潘登, 吴志刚, 杨超, 等. 大柔性飞机非线性飞行载荷分析及优化. 航空学报, 2010, 31(11): 2146-2151.
[14]  Xie C C, Yang C. Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings. Scientia Sinica: Technologica, 2011, 41(3): 385-393. (in Chinese) 谢长川, 杨超. 大展弦比飞机几何非线性气动弹性稳定性的线性化方法. 中国科学: 技术科学, 2011, 41(3): 385-393.
[15]  Patil M J, Hodges D H. Flight dynamics of highly flexible flying wings. Journal of Aircraft, 2006, 43(6): 1790-1798.
[16]  Sotoudeh Z, Hodges D H. Modeling beams with various boundary conditions using fully intrinsic equation. AIAA-2010-3034, 2010.
[17]  Xu X H, Zhu F S. Numerical method of stiff ordinary differential equations. Wuhan: Wuhan University Press, 1997. (in Chinese) 徐绪海, 朱方生. 刚性微分方程的数值方法. 武汉: 武汉大学出版社, 1997.
[18]  Radhakrishnan K, Hindmarsh A C. Description and use of LSODE, the livermore solver for ordinary differential equations. NASA RP-1327, UCRL-ID-I 13855, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133