全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

热声载荷作用下薄壁结构的非线性响应特性

DOI: 10.7527/S1000-6893.2013.0234, PP. 1336-1346

Keywords: 薄壁结构,热声载荷,非线性响应,热屈曲,跳变响应

Full-Text   Cite this paper   Add to My Lib

Abstract:

高速飞行器面临着严酷的高温强噪声环境。温度载荷不仅使结构产生热应力,还会改变材料的物性参数,这使得薄壁结构在宽频噪声激励下具有复杂的运动形式,表现出强非线性特性,严重影响了结构的疲劳寿命。针对热声载荷对结构非线性特性的影响,建立了热声载荷下的非线性大挠度偏微分控制方程,对偏微分方程使用Galerkin法得到了模态坐标下的常微分方程组。计算了四边简支矩形钛合金板在不同温度和声压级(SPL)组合下的动态响应,得到了典型的热声响应运动形式,包括屈曲前的线性随机振动、屈曲后的跳变运动和围绕一个平衡位置的随机振动。通过分析方程中的恢复力项和响应的功率谱密度(PSD)随着温度和SPL的变化规律,对热声响应的非线性特性进行了研究。研究结果表明,热载荷和声载荷对响应非线性特性的影响方式不同热载荷改变结构刚度特性曲线的形状,以临界屈曲状态的刚度为参照,屈曲前降低结构刚度,屈曲后增加结构刚度;噪声载荷使得结构工作在刚度曲线的不同区域,以不受载荷时的结构刚度为对照,强噪声载荷引起的持续跳变使得结构工作在硬化区域,间歇跳变时结构工作在软化区域。

References

[1]  Blevins R D, Bofilios D, Holehouse I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure. AFRL-RB-WP-TR-2009-3139. Chula Vista, CA: Goodrich Aerostructures Group, 2009.
[2]  Sha Y D, Li J Y, Gao Z J. Dynamic response of pre/post buckled thin-walled structure under thermo-acoustic loading. Applied Mechanics and Materials, 2011, 80-81: 536-541.
[3]  Sha Y D, Gao Z J, Xu F. Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading. Advanced Engineering Forum, 2011, 2-3: 876-881.
[4]  Sha Y D, Xu F, Gao Z J. Nonlinear response of carbon-carbon composite panels subjected to thermal-acoustic loadings. Applied Mechanics and Materials, 2011, 117-119: 876-881.
[5]  Guo X P, Sha Y D, Bai S S, et al. Application study of the random sonic acoustic fatigue based on the rain-flow counting and power spectrum density. Journal of Aeroengine, 2010, 36(5): 27-31. (in Chinese) 郭小鹏, 沙云东, 柏树生, 等. 基于雨流计数法和功率谱密度法的随机声疲劳应用研究. 航空发动机, 2010, 36(5): 27-31.
[6]  Sha Y D, Guo X P, Liao L F, et al. Probability distribution of von Mises stress for complex thin-walled structures undergoing random acoustic loadings. Journal of Vibration and Shock, 2011, 30(1): 137-141. (in Chinese) 沙云东, 郭小鹏, 廖连芳, 等. 随机声载荷作用下的复合薄壁结构Von Mises 应力概率分布研究. 振动与冲击, 2011, 30(1): 137-141.
[7]  Leatherwood J D, Clevenson S A, Powell C A, et al. Acoustic testing of high temperature panels. AIAA-1990-3939, 1990.
[8]  Wu Z Q, Ren F, Zhang W, et al. Research advances in thermal-acoustic testing of aerocraft structures. Journal of Missiles and Space Vehicles, 2010(2): 24-30. (in Chinese) 吴振强, 任方, 张伟, 等. 飞行器结构热噪声试验的研究进展. 导弹与航天运载技术, 2010 (2): 24-30.
[9]  Ng C F, Clevenson S A. High-intensity acoustic tests of a thermally stressed plate. Journal of Aircraft, 1991, 28(4): 275-281.
[10]  Ng C F, Wentz K R. The prediction and measurement of thermo-acoustic response of plate structures. The Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1990.
[11]  Vaicaitis R. Nonlinear response and sonic fatigue of national aerospace space plane surface panels. Journal of Aircraft, 1994, 31(1): 10-18.
[12]  Lee J. Large-amplitude plate vibration in an elevated thermal environment. WL-TR-92-3049. Wright-Patterson AFB, OH: Flight Dynamics Directorate, Wright Laboratory, 1992.
[13]  Lee J. Energy-conserving Galerkin representation of clamped plates under a moderately large deflection. Journal of Sound and Vibration, 2004, 275(3): 649-664.
[14]  Chen R X, Mei C. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously. The Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1993.
[15]  Dhainaut J M, Guo X Y, Mei C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment. Journal of Aircraft, 2003, 40(4): 683-691.
[16]  Rizzi S A, Przekop A. The effect of basis selection on thermal-acoustic random response prediction using nonlinear modal simulation. The proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004.
[17]  Rizzi S A, Przekop A. Estimation of sonic fatigue by reduced-order finite element based analyses. The IX International Conference on Recent Advances in Structural Dynamics, 2006.
[18]  Spottswood S M, Hollkamp J J, Eason T G. Reduced-order models for a shallow curved beam under combined loading. AIAA Journal, 2010, 48(1): 47-55.
[19]  Spottswood S M, Michael S. Identification of nonlinear parameters from experimental data for reduced order models. Cincinnati, OH: Department of Mechanical, Industrial, and Nuclear Engineering, University of Cincinnati, 2006.
[20]  Yang X W, Li Y M, Geng Q. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1851-1859.(in Chinese) 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析.航空学报,2011, 32(11): 1851-1859.
[21]  Murphy K D, Virgin L N, Rizzi S A. Characterizing the dynamic response of a thermally loaded, acoustically excited plate. Journal of Sound and Vibration, 1996, 196(5): 635-658.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133