全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

等离子喷涂LaTi2Al9O19热障涂层的微观组织结构及热物理性能

DOI: 10.7527/S1000-6893.2013.0244, PP. 1485-1492

Keywords: 热障涂层,陶瓷,LaTi2Al9O19,等离子喷涂,热导率

Full-Text   Cite this paper   Add to My Lib

Abstract:

第一代热障涂层(TBCs)由氧化钇部分稳定的氧化锆(YSZ)陶瓷隔热层和金属粘结层组成,该涂层长期使用温度低于1200℃。随着先进航空发动机向着高推重比发展,迫切要求发展新一代超高温、高隔热热障涂层材料。LaTi2Al9O19(LTA)在1500℃长期保持相稳定,是一种非常有前景的超高温热障涂层候选材料。本文采用大气等离子喷涂(APS)制备了LTA涂层,研究了喷涂工艺对涂层微观组织结构和热物理性能的影响。结果表明沉积态涂层中含少量的非晶态,在860℃和1130℃出现晶化峰。等离子喷涂过程中La2O3挥发量较多,导致沉积态涂层中La元素与原始粉末相比含量偏低,而其他组分的化学成分随喷涂功率变化不大。LTA涂层的热扩散系数在1400℃下为0.3~0.4mm2·s-1,热导率为1.1~1.6W·m-1·K-1。1050℃经过20小时热处理后,得到晶化的涂层在晶化温度范围内的热扩散系数和热导率值均增大。随着喷涂功率减小,涂层孔隙率增加,热导率减小。

References

[1]  Xie X Y, Guo H B, Gong S K, et al. Lanthanum-titanium-aluminum oxide: A novel thermal barrier coating material for applications at 1300℃[J]. Journal of the European Ceramic Society, 2011, 31(9): 1677-1683.
[2]  Xie X Y, Guo H B, Gong S K. Mechanical Properties of LaTi2Al9O19 and Thermal Cycling Behaviors of Plasma-Sprayed LaTi2Al9O19/YSZ Thermal Barrier Coatings[J]. Journal of Thermal Spray Technolgy, 2010, 19(6): 1179-1185.
[3]  Xie X Y, Guo H B, Gong S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surface and Coatings Technology, 2011, 205(17): 4291-4298.
[4]  Xie X Y. Study on the Thermo-Physical Properties and High Temperature Stability of LaTi2Al9O19 Thermal Barrier Coatings[D]. Beijing: School of Material Science and Engineering, Beihang University, 2011.
[5]  谢小云. LaTi2Al9O19热障涂层热物理性能及高温定性研究[D]. 北京: 北京航空航天大学, 材料科学与工程学院, 2011.
[6]  Tarasi F, Medraj M, Dolatabadi A, et al. Amorphous and crystalline phase formation during suspension plasma spraying of the alumina-zirconia composite[J]. Journal of the European Ceramic Society, 2011, 31: 2903-2913.
[7]  Wesseling P, Ko B C, Lewandowski J J. Quantitative evaluation of α-Al nano-particles in amorphous Al87Ni7Gd6-comparison of XRD, DSC, and TEM[J]. Scripta Materialia, 2003, 48: 1537-1541.
[8]  Schlichting K W, Padture N P, Klemens P G. Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia[J]. Journal of Materials Science, 2001, 36: 3003-3010.
[9]  Schulz U, Saruhan B, Fritscher K, et al. Review on Advanced EB-PVD Ceramic Topcoats for TBC Appli-cations[J]. International Journal of Applied Ceramic Technology, 2004, 1(4): 302-315.
[10]  ASTM C693-84, Standard Test Method for Measure-ment of Density of Glass by Buoyancy[S]. USA: Amer-ican Society for Testing and Materials. Philadelphia, PA, 1985.
[11]  Kingery W. D. Thermal Conductivity: XII, Tempera-ture Dependence of Conductivity for Single-Phase Ce-ramics[J]. Journal of the American Ceramic Society, 1955, 38: 251–255.
[12]  Guo H B, Gong S K, Xu H B. Progress in Thermal Barrer Coating for Advanced Aeroengines[J]. Materials China, 2009, 28(9-10): 18-26. (in Chinese)
[13]  郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9-10): 18-26.
[14]  Harmsworth P D, Stevens R. Phase composition and properties of plasma-sprayed zirconia thermal barrier coatings[J]. Journal of materials science, 1992, 27(3): 611-615.
[15]  Miller R A. Thermal barrier coatings for aircraft engines: history and directions[J]. Journal of Thermal Spray Technology, 1997, 6(1): 35-42.
[16]  Thornton J, Majumdar A, McAdam G. Enhanced Cerium Migration in Ceria-stabilized Zirconia[J]. Surface and Coatings Technology, 1997, 94/95:112-117.
[17]  Matsumoto M, Yamaguchi N, Matsubara H. Low Ther-mal Conductivity and High Temperature Stability of ZrO2-Y2O3-La2O3 Coatings Produced by Electron Beam PVD[J]. Scripta Materialia, 2004, 50: 867-871.
[18]  Vaβen R, St?ver D. New Thermal Barrier Coatings Based On Pyrochlore/YSZ Double Layer Systems[J]. International Journal of Applied Ceramic Technology, 2005, 1: 351-361.
[19]  Vaβen R, Cao X Q, Tietz F, et al. Zirconates as New Materials for Thermal Barrier Coatings[J]. Journal of the American Ceramic Society, 2000, 83(8): 2023-2028.
[20]  Cao X Q, Vaβen R, Fischer W, et al. Lanthanum-Cerium Oxide as a Thermal Barrier Coating Material for High-Temperature Applications[J]. Advanced Mate-rials, 2003, 15: 1438-1442.
[21]  Ma W, Gong S K, Xu H B, et al. On Improving the Phase Stability and Thermal Expansion Coefficients of Lanthanum Cerium Oxide Solid Solutions[J]. Scripta Materialia, 2006, 54: 1505-1508.
[22]  Gadow R, Sch?fer G. in Ceramic Engineering and Science Pr, Ersan Ustundag, ed., 23rd Annual Conference on Composites, Advanced Ceramics, eds., Westerville, OH, 1999, (20) (4) 29-300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133