全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

RANS/LES在超声速突起物绕流中的应用研究

DOI: 10.7527/S1000-6893.2013.0271, PP. 1531-1537

Keywords: RANS/LES方法,突起物,激波/边界层干扰,超声速流动,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

安装在超声速/高超声速飞行器表面的突起物如机翼、控制舵等通常会导致复杂的激波/边界层干扰,对突起物的局部气动特性甚至飞行器整体的气动特性产生较大的扰动。在采用计算流体力学(CFD)数值模拟此类问题时,传统的求解雷诺平均Navier-Stokes(RANS)方程方法由于不能准确预测湍流脉动流场并且精度有限,在应用上受到一定的限制。本文在研究B-L(Baldwin-Lomax)内层模型和Smagorinsky亚格子模型优缺点的基础上,提出了一种新型的RANS/LES(LargeEddySimulation)混合模型,并进行了算例验证,证实了该方法的可行性。在此基础上,对火箭表面突起物的干扰流场进行了数值模拟研究,细致地刻画了突起物附近的激波/边界层干扰、剪切层失稳和底部分离涡形成的非定常过程,获得了突起物及火箭表面上的压力脉动历程并进行了频谱分析。研究发现,相对于突起物底部的非定常分离流动,突起物前缘的激波和边界层相互干扰的非定常过程是突起物周围压力脉动的主导因素,这种高频的压力脉动可能对火箭内设备的正常工作产生不利的影响。

References

[1]  Li S X. Complex flow field lead by shock wave and boundary layer. Beijing: Science Press, 2007: 11-15. (in Chinese) 李素循. 激波与边界层主导的复杂流动.北京:科学出版社, 2007: 11-15.
[2]  Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.
[3]  Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.
[4]  Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.
[5]  Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.
[6]  Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.
[7]  SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.
[8]  Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.
[9]  Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11
[10]  Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[11]  Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.
[12]  Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 1961, 10(3): 345-356.
[13]  Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.
[14]  Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.
[15]  Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.
[16]  Sedney R. A survey of the effects of small protuberance on boundary-layer flows. AIAA Jounal, 1973, 11(16): 782-792.
[17]  Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.
[18]  Ozxan O, Holt M. Supersonic separate flow past a cylindrical obstacle on a flat plate. AIAA Journal, 1984, 22(5): 611-617.
[19]  Bookey P, Wyckjam C, Smits A. Experiments investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA-2005-4899, 2005.
[20]  Estruch-Samper D, Bu X Q. Experimental investigation on hypersonic interference heating around surface protuberance. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1578-1586.(in Chinese) Estruch-Samper D, 卜雪琴. 高超声速下表面凸起干扰气动热实验研究. 航空学报, 2012, 33(9): 1578-1586.
[21]  Li S X. An experimental study and analysis on complex shock wave/boundary layer interactive flows induced by protuberances at hypersonic speed. Proceedings of the Eighth Asian Congress of Fluid Mechanics, 1999: 69-74.
[22]  Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.
[23]  Herrin J L, Dutton J C. Base bleed experiments with a cylindrical after body in supersonic flow. Journal of Spacecraft Rockets, 1994, 31(6): 1021-1028.
[24]  Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 1961, 10(3): 345-356.
[25]  Shin J R, Cho D R, Won S H, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream. AIAA-2008-2588, 2008.
[26]  Nichols R H. Comparison of hybrid RANS/LES turbulence models on a circular cylinder at high Reynolds number. AIAA-2005-498, 2005.
[27]  Si F F. Study of the high speed main flow and thrust vectoring interaction. Mianyang: China Aerodynamics Research and Development Center, 2010.(in Chinese) 司芳芳. 推力转向喷流与高速主流干扰的数值模拟研究. 绵阳:中国空气动力研究与发展中心, 2010.
[28]  Yuan X X, Deng X B, Xie Y F, et al. Research on the RANS/LES hybrid method for supersonic-hypersonic turbulence flow. Acta Aerodynamic Sinica, 2009, 27(6): 723-728. (in Chinese) 袁先旭,邓小兵,谢昱飞,等.超声速湍流流场的RANS/LES混合计算方法研究. 空气动力学学报, 2009, 27(6): 723-728.
[29]  Kawai S, Fujii K. Compact scheme with filtering for large-eddy simulation of transitional boundary layer. AIAA Journal, 2008, 46(3): 690-700.
[30]  Franck S, Sebastien D. Philippe G, et al. RANS-LES simulation of supersonic base flow. AIAA-2006-898, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133