Li S X. Complex flow field lead by shock wave and boundary layer. Beijing: Science Press, 2007: 11-15. (in Chinese) 李素循. 激波与边界层主导的复杂流动.北京:科学出版社, 2007: 11-15.
[2]
Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.
[3]
Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.
[4]
Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.
[5]
Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.
[6]
Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.
[7]
SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.
[8]
Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.
[9]
Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11
[10]
Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[11]
Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.
[12]
Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 1961, 10(3): 345-356.
[13]
Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.
[14]
Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.
[15]
Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.
[16]
Sedney R. A survey of the effects of small protuberance on boundary-layer flows. AIAA Jounal, 1973, 11(16): 782-792.
[17]
Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.
[18]
Ozxan O, Holt M. Supersonic separate flow past a cylindrical obstacle on a flat plate. AIAA Journal, 1984, 22(5): 611-617.
[19]
Bookey P, Wyckjam C, Smits A. Experiments investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA-2005-4899, 2005.
[20]
Estruch-Samper D, Bu X Q. Experimental investigation on hypersonic interference heating around surface protuberance. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1578-1586.(in Chinese) Estruch-Samper D, 卜雪琴. 高超声速下表面凸起干扰气动热实验研究. 航空学报, 2012, 33(9): 1578-1586.
[21]
Li S X. An experimental study and analysis on complex shock wave/boundary layer interactive flows induced by protuberances at hypersonic speed. Proceedings of the Eighth Asian Congress of Fluid Mechanics, 1999: 69-74.
[22]
Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.
[23]
Herrin J L, Dutton J C. Base bleed experiments with a cylindrical after body in supersonic flow. Journal of Spacecraft Rockets, 1994, 31(6): 1021-1028.
[24]
Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 1961, 10(3): 345-356.
[25]
Shin J R, Cho D R, Won S H, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream. AIAA-2008-2588, 2008.
[26]
Nichols R H. Comparison of hybrid RANS/LES turbulence models on a circular cylinder at high Reynolds number. AIAA-2005-498, 2005.
[27]
Si F F. Study of the high speed main flow and thrust vectoring interaction. Mianyang: China Aerodynamics Research and Development Center, 2010.(in Chinese) 司芳芳. 推力转向喷流与高速主流干扰的数值模拟研究. 绵阳:中国空气动力研究与发展中心, 2010.
[28]
Yuan X X, Deng X B, Xie Y F, et al. Research on the RANS/LES hybrid method for supersonic-hypersonic turbulence flow. Acta Aerodynamic Sinica, 2009, 27(6): 723-728. (in Chinese) 袁先旭,邓小兵,谢昱飞,等.超声速湍流流场的RANS/LES混合计算方法研究. 空气动力学学报, 2009, 27(6): 723-728.
[29]
Kawai S, Fujii K. Compact scheme with filtering for large-eddy simulation of transitional boundary layer. AIAA Journal, 2008, 46(3): 690-700.
[30]
Franck S, Sebastien D. Philippe G, et al. RANS-LES simulation of supersonic base flow. AIAA-2006-898, 2006.