全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

基于径向基函数的网格变形及非线性气动弹性时域仿真研究

DOI: 10.7527/S1000-6893.2013.0122, PP. 1501-1511

Keywords: 径向基函数,网格变形,插值,非线性,气动弹性,大展弦比,三角翼,极限环振荡

Full-Text   Cite this paper   Add to My Lib

Abstract:

为开展非线性气动弹性研究,基于非线性结构有限元软件NASTRAN和自主研制的多块结构化计算流体力学(CFD)求解器,开发了一套基于计算流体力学/计算结构动力学(CFD/CSD)耦合求解方法的气动弹性时域仿真程序。该程序采用径向基函数(RBF)交换两套求解器之间的数据并进行网格变形。为提高RBF方法的效率,构造了基于多次插值的空间待插值点精简算法。在多次插值过程中,每次插值的对象为上次插值的误差,并同时限制插值区域,以此实现了空间待插值网格数的精简。数个网格变形的算例表明该方法可支持大变形运动,并且具有较高的计算效率。采用此程序开展了AGARD445.6机翼颤振计算、大展弦比机翼的静气动弹性计算与切尖三角翼极限环振荡(LCO)现象的动气动弹性仿真,结果揭示了当机翼展弦比较大或者响应幅值较大时,结构非线性对于气动弹性有显著影响。

References

[1]  Cai H L, Gao Y M, Bing Q J, et al. The research status and key technology analysis of foreign non-cooperative target in space capture system. Journal of the Academy of Equipment Command & Technology, 2010, 21(6):71-77.(in Chinese) 蔡洪亮, 高永明, 邴启军, 等. 国外空间非合作目标抓捕系统研究现状与关键技术分析. 装备指挥技术学院学报, 2010, 21(6): 71-77.
[2]  Chen T, Xu S J. A fuzzy controller for terminal approach of autonomous rendezvous and docking with non-cooperative target. Journal of Astronautics, 2006,27(3):416-421. (in Chinese) 陈统, 徐世杰. 非合作目式自主交会对接的终端接近模糊控制. 宇航学报, 2006, 27(3): 416-421.
[3]  Wingo D R. Orbital recovery’s responsive commercial space tug for life extension mission. AIAA-2004-3004, 2004.
[4]  Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA-TP-1998-208528, 1998.
[5]  Regan F J, Kavetsky R A. Add 2 on controller for ballistic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880.
[6]  Zhang J, Tan J J, Chu J, et al. New method for generating unstructured moving grids. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(5): 633-636. (in Chinese) 张军, 谭俊杰, 褚江, 等. 一种新的非结构动网格生成方法. 南京航空航天大学学报, 2007, 39(5): 633-636.
[7]  Liu J, Bai X Z, Guo Z. Unstructured grid moving method and its application for the simulation of flow with moving interface.Changsha: National University of Defence Technology Press, 2009: 81-94. (in Chinese) 刘君, 白晓征, 郭正. 非结构动网格计算方法-及其在包含运动界面的流场模拟中的应用. 长沙:国防科学技术大学出版社, 2009: 81-94.
[8]  Huo S H, Wang F S, Yue Z F. Spring analogy method for generating of 2D unstructured dynamic meshes. Journal of Vibration and Shock, 2011, 20(10): 177-182. (in Chinese) 霍世慧, 王富生, 岳珠峰. 弹簧近似法在二维非结构动网格生成技术中的应用. 振动与冲击, 2011, 20(10): 177-182.
[9]  Wu Y Z, Tian S L, Xia J. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 15-26. (in Chinese) 伍贻兆, 田书铃, 夏键. 基于非结构动网格的非定常数值模拟方法. 航空学报, 2011, 32(1): 15-26.
[10]  Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10(8): 1031-1015.
[11]  Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms. Journal of Computational Physics, 2009, 228(7): 6231-6249.
[12]  Childs D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9): 11-15.
[13]  Kunciw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12(5):45-51.
[14]  Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions. Journal of Computational Physics, 2010, 229(8): 2810-2820.
[15]  Wang G, Lei B Q, Ye Z Y, An efficient deformation technique for hybrid unstructured grid using radial basis functions. Journal of Northwestern Polytechnical University, 2011, 29(5): 783-788. (in Chinese) 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术. 西北工业大学学报, 2011, 29(5): 783-788.
[16]  Michler A K. Aircraft control surface deflection using RBF-based mesh deformation. International Journal for Numerical Methods in Engineering, 2011, 88(10): 986- 1007.
[17]  Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10(5): 41-45.
[18]  Beckert A, Wendland H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology, 2001, 5(2): 125-134.
[19]  Boer A D, Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation. Computers & Structures, 2007, 85(11): 784-795.
[20]  Rendall T C S, Allen C B. Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors. International Journal for Numerical Methods in Engineering, 2010, 81(1): 89-105.
[21]  Jae J K, Brij N A. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1005-1017.
[22]  Xie L. Development of aeroelastic simulation software based on CFD. Xi’an: College of Aeronautics, Northwestern Polytechnical University, 2012. (in Chinese) 谢亮. 基于CFD的气动弹性时域仿真软件开发初步研究. 西安: 西北工业大学航空学院, 2012.
[23]  Zeng X A. Studies of model reduction technique for aeroelastic. Xi’an: College of Astronautics, Northwestern Polytechnical University, 2008.(in Chinese) 曾宪昂. 模型降阶技术在气动弹性中的应用研究. 西安: 西北工业大学航天学院, 2008.
[24]  MSC, Inc. MSC.NASTRAN reference manual. Wisconsin Rapids, USA: MSC.Inc, 2004: 342-346.
[25]  Yates E C. AGARD standard aeroelastic configurations for dynamic response I-wing 445.6. The 61st Meeting of the Structures and Materials Panel. Oberammergu, Germany: NATO Science and Technology Organization, 1985: 1-85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133