全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

智能材料和结构在变体飞行器上的应用现状与前景展望

DOI: 10.7527/S1000-6893.2013.0265, PP. 29-45

Keywords: 飞行器材料,智能材料和结构,变体飞行器,自适应结构,驱动器,变形蒙皮

Full-Text   Cite this paper   Add to My Lib

Abstract:

变体飞行器可以根据不同的飞行条件改变自身形状以获得最优的气动性能,大大提高飞行器的综合性能,是未来飞行器发展的重要方向之一。新型智能材料和结构具有驱动、变形、承载、传感等特点,为变体飞行器的设计提供了新的技术途径。本文根据不同可变形机翼结构分类,详细阐述了智能材料和结构在自适应结构、智能驱动器和变形蒙皮等方面的研究现状。变体飞行器的实现亟需解决变形/承载一体化蒙皮技术、轻质大输出力驱动器技术和自适应结构技术等关键技术,本文还对智能材料和结构未来在变体飞行器上的应用前景进行了展望。

References

[1]  Du S Y, Leng J S, Wang D F. Smart material systems and structures[M]. Beijing: Science Press, 2001: 1-5. (in Chinese) 杜善义, 冷劲松, 王殿富. 智能材料系统和结构[M]. 北京: 科学出版社, 2001: 1-5.
[2]  Lloyd P A. Requirements for smart materials[J]. Proceedings of Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 22(4): 471-478.
[3]  Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.
[4]  Gomez J C, Garcia E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures, 2011, 20(10): 1-16.
[5]  Hartl D J, Lagoudas D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 535-552.
[6]  Du S Y, Zhang B M. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics, 2007, 28(4): 773-778. (in Chinese) 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4): 773-778.
[7]  Chen Y, Xiong K, Wang X W, et al. Progress and challenges in aeronautical smart structure systems[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1): 21-25. (in Chinese) 陈勇, 熊克, 王鑫伟, 等. 飞行器智能结构系统研究进展与关键问题[J]. 航空学报, 2004, 25(1): 21-25.
[8]  Qiu J H, Bian Y X, Ji H L, et al. Application of smart materials and structures in aviation industry[J]. Aeronautical Manufacturing Technology, 2009(3): 26-29. (in Chinese) 裘进浩, 边义祥, 季宏丽, 等. 智能材料结构在航空领域中的应用[J]. 航空制造技术, 2009(3): 26-29.
[9]  Jha A K, Kudva J N. Morphing aircraft concepts, classifications, and challenges[C]//Proceedings of SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. 2004, 5388: 213-224.
[10]  Smith K, Butt J, Spakovsky M R, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]//39th AIAA Thermophysics Conference. USA: AIAA, 2007, AIAA 2007-4616: 1-12.
[11]  Roth B, Peters C, Crossley W A. Aircraft sizing with morphing as an independent variable: motivation, strategies and investigations[C]//AIAA's Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical. USA: AIAA, 2002, AIAA 2002-5840: 1-11.
[12]  Peters C, Roth B, Crossley W A, et al. Use of design methods to generate and develop missions for morphing aircraft[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. USA: AIAA, 2002, AIAA 2002-5468: 1-11.
[13]  Frommer J B, Crossley W A. Enabling continuous optimization for sizing morphing aircraft concepts[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. USA: AIAA, 2005, AIAA 2005-816: 1-12.
[14]  Cistone J. Next century aerospace traffic management: the sky is no longer the limit[J].Journal of Aircraft, 2004, 41(1): 36-42.
[15]  Bilgen O, Kochersberger K, Diggs E C, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1785: 1-16.
[16]  Vos R, Barrett R, Breuker R, et al. Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs[J]. Smart Materials and Structures, 2007, 16(3): 919-926.
[17]  Manzol J, Garcia E, Wickenheiser A, et al. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[C]//Proceedings of SPIE Vol. 5764. USA: SPIE, 2005: 232-240.
[18]  Li W, Xiong K, Chen H, et al. Research on variable cant angle winglets with shape memory alloy spring actuators[J]. Acta Aeronautic et Astronautica Sinica, 2012, 31(1): 22-33. (in Chinese) 李伟, 熊克, 陈宏, 等. 含有SMA弹簧驱动器的可变倾斜角翼梢小翼研究[J]. 航空学报, 2012, 31(1): 22-33.
[19]  Syaifuddin M, Park H C, Yoon K J, et al. Design and evaluation of LIPCA-actuated flapping device[C]//Proceedings of SPIE Vol. 5764. USA: SPIE, 2005: 151-158.
[20]  Rodriguez A R. Morphing aircraft technology survey[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. USA: AIAA, 2007, AIAA 2007-1258: 1-16.
[21]  Calkins F T, Mabe J H. Shape memory alloy based morphing aerostructures[J]. Journal of Mechanical Design, 2010, 132(11): 1-7.
[22]  Zhu H, Liu W D, Zhao C S. Morphing aircraft and its morph-driving techniques[J]. Machine Building and Automation, 2010, 39(2): 8-14, 125. (in Chinese) 朱华, 刘卫东, 赵淳生. 变体飞行器及其变形驱动技术[J]. 机械制造与自动化, 2010, 39(2): 8-14, 125.
[23]  Cui E J, Bai P, Yang J M. Development of smart morphing aircrafts[J]. Aeronautical Manufacturing Technology, 2007 (8): 38-41. (in Chinese) 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007(8): 38-41.
[24]  Joshi S P, Tidwell Z, Crossley W A, et al. Comparison of morphing wing stategies based upon aircraft performance impacts[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. USA: AIAA, 2004, AIAA 2004-1722: 1-7.
[25]  Bye D R, McClure P D. Design of a morphing vehicle[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1728: 1-16.
[26]  Leng J S, Du S Y. Shape memory polymer and multifunctional nanocomposite[M]. UK: CRC Press/Taylor & Francis, 2010: 1-15.
[27]  Ivanco T G, Scott R C, Love M H, et al. Validation of the Lockheed Martin morphing concept with wind tunnel testing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-2235:1-17.
[28]  Flanaganl J S, Strutzenberg R C, Myers R B, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1707: 1-3.
[29]  Keihl M M, Bortolin R S, Sanders B, et al. Mechanical properties of shape memory polymers for morphing aircraft applications[C]//Proceedings of SPIE Vol. 5762. USA: SPIE, 2005: 143-151.
[30]  Andersen G R, Cowan D L, Piatak D J. Skin designs using multi-objective topology optimization[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1734:1-15.
[31]  Yu K, Yin W L, Sun S, et al. Design and analysis of morphing wing based on SMP composite[C]//Proceedings of SPIE Vol. 7290. USA: SPIE, 2009: 1-8.
[32]  Perkins D A, Reed J L, Havens J E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. USA: AIAA, 2004, AIAA 2004-1888: 1-10.
[33]  Sneed R C, Smith R R, Cash M F, et al. Smart-material based hydraulic pump system for actuation of a morphing wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2007, AIAA 2007-1702: 1-10.
[34]  Chen Y J, Sun J, Liu Y J, et al. Experiment and analysis of fluidic flexible matrix composite (F2MC) tube[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3): 279-290.
[35]  Chen Y J, Sun J, Liu Y J, et al. Variable stiffness properties study on shape memory polymer composite tube[J]. Smart Materials and Structures, 2012, 21(9): 1-9.
[36]  Chen Y J, Yin W L, Liu Y J, et al. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers[J]. Smart Materials and Structures, 2011, 20(8): 1-8.
[37]  Kudva J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267.
[38]  Li J, Qin Y H, Bai T, et al. Development of a morphing wing with adaptive capability[J]. Acta Aerodynamica Sinica, 2009, 27(5): 505-508. (in Chinese) 黎军, 秦燕华, 白涛, 等. 采用智能材料的变弯扭机翼实验研究[J]. 空气动力学学报, 2009, 27(5): 505-508.
[39]  Yin W L, Fu T, Liu J C, et al. Structural shape sensing for variable camber wing using FBG sensors[C]//Proceedings of SPIE Vol. 7292. USA: SPIE, 2009: 1-10.
[40]  Leng J S, Liu L W, Lv H B, et al. Applications of shape memory polymer composite structures in aerospace[J]. JEC Composites Magazine, 2012, 72: 36-38.
[41]  Sun J, Xu Y Y, Chen Y J, et al. Mechanical and electrical properties of spandex reinforced GMWNT/epoxy shape memory composites[C]//Proceedings of SPIE Vol. 8342. USA: SPIE, 2012: 1-6.
[42]  Kota S, Hetrick J, Osborn R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Proceedings of SPIE Vol. 5054. USA: SPIE, 2003: 24-33.
[43]  Barbarino S, Pecora R, Lecce L, et al. Airfoil structural morphing based on SMA actuator series: numerical and experimental studies[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 987-1004.
[44]  Yang Y, Xu Z W. Research of the airfoil structure based on a shape-memory alloy actuated morphing wing[J]. Ordnance Material Science and Engineering, 2010, 33(1): 25-30. (in Chinese) 杨媛, 徐志伟. 基于SMA 的飞行器变体机翼驱动结构研究[J]. 兵器材料科学与工程, 2010, 33(1): 25-30.
[45]  Brailovski V, Terriault P, Georges T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10: 197-203.
[46]  O'Neill C, Burchfield J. Kinetic ceramics piezoelectric hydraulic pumps[C]//Proceedings of SPIE Vol. 6527. USA: SPIE, 2007: 1-14.
[47]  Sun J, Sun Q J, Liu Y J, et al. Design of piezoelectric stack pump based on flexible amplification mechanism[C]//Proceedings of the 16th National Conference of Composite Material (Composite Material: Innovation and Sustainable Development). Beijing: China Science and Technology Press, 2012: 1222-1228. (in Chinese) 孙健, 孙启健, 刘彦菊, 等. 一种基于柔性放大机构的压电叠堆泵设计[C]//第16届全国复合材料学术会议论文集《复合材料:创新与可持续发展》. 北京: 中国科学技术出版社, 2012, 1222-1228.
[48]  Kim H I, Kim D K, Han J H. Study of flapping actuator modules using IPMC[C]//Proceedings of SPIE Vol. 6524. USA: SPIE, 2007: 1-12.
[49]  Kim D K, Kim H I, Han J H, et al. Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(3): 423-431.
[50]  Monner H P, Riemenschneider J, Opitz S, et al. Development of active twist rotors at the German Aerospace Center (DLR)[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA: AIAA, 2011, AIAA 2011-1824: 1-10.
[51]  Konstanzer P, Enenkl B, Aubourg P A, et al. Recent advances in Eurocopter's passive and active vibration control[C]//The American Helicopter Society 64th Annual Forum. USA: the American Helicopter Society, 2008.
[52]  Bushnell G S, Arbogast D, Ruggeri R. Shape control of a morphing structure (rotor blade) using a shape memory alloy actuator system[C]//Proceedings of SPIE Vol. 6928. USA: SPIE, 2008: 1-11.
[53]  Straub F K, Kennedy D K, Domzalski D B, et al. Smart material-actuated rotor technology-SMART[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 249-260.
[54]  Straub F K, Kennedy D K, Stemple A D, et al. Development and whirl tower test of the Smart active flap rotor[C]//Proceedings of SPIE Vol.5388. USA: SPIE, 2004: 1-11.
[55]  Lau B H, Obriecht N, Gasow T, et al. Boeing-SMART test report for DARPA helicopter quieting program. USA: Boeing, ADA529306, 2009: 1-15.
[56]  Zhang Z, Huang W J, Yang W D. Design analysis and test of smart rotor blades model with trailing edge flaps[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(3): 296-301. (in Chinese) 张柱, 黄文俊, 杨卫东. 后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J]. 南京航空航天大学学报, 2011, 43(3): 296-301.
[57]  Zhou G Q, Lu D J, Yang W D. Wind tunnel testing of active twist smart rotor[J]. Helicopter Technique, 2007(3): 81-87. (in Chinese) 周国庆, 卢德军, 杨卫东. 主动扭转智能旋翼模型试验研究[J]. 直升机技术, 2007(3): 81-87.
[58]  Song G B, Ma N, Li L Y, et al. Design and control of a proof-of-concept active jet engine[J]. Smart Structures and Systems, 2011, 7(1): 1-13.
[59]  Lee H J, Song G B. Prototype morphing fan nozzle demonstrated[DB/OL]. (2005-01-18)[2012-11-29] .
[60]  Mabe J. Variable area jet nuzzle for noise reduction using shape memory alloy actuators[C]//Acoustics 08 Paris. France: European Acoustics Association, 2008: 5487-5492.
[61]  Pitt D M, Dunne J P, White E V. Design and test of a SMA powered adaptive aircraft inlet internal wall[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. USA: AIAA, 2002, AIAA2002-1356: 1-8.
[62]  Hartl D, Lagoudas D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221 (4): 535-552.
[63]  Leng J S, Lan X, Liu Y J, et al. Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56(7): 1077-1135.
[64]  Olympio K R, Gandhi F. Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2009, 21(17): 1737-1753.
[65]  Bubert E A, Woods B K S, Lee K J, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(7): 1699-1717.
[66]  Dong E B. Research on realization mechanism and some key technologies of smart morphing aircraft structures[D]. Hefei: School of Engineering Science, University of Science and Technology of China, 2010. 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学工程科学学院, 2010.
[67]  Thill C, Etches J A, Bond I P, et al. Composite corrugated structures for morphing wing skin applications[J]. Smart Materials and Structures, 2010, 19: 124009.
[68]  Mou C W, Wang B F, Ge R J, et al. Basal body preparation and drive characteristic of corrugated skin with the active deformability[J]. Ordnance Material Science and Engineering, 2010, 33(2): 11-14. (in Chinese) 牟常伟, 王帮峰, 葛瑞钧, 等. 可主动变形的波纹式蒙皮基体制备及驱动特性[J]. 兵器材料科学与工程, 2010, 33(2): 11-14.
[69]  Monnier T. Lamb Waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(5): 411-421.
[70]  Wu J, Yuan S F, Ji S, et al. Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring[J]. Expert Systems with Applications, 2010, 37(3): 2028-2036.
[71]  Dai Y B, Liu Y J, Leng J S, et al. A novel time-division multiplexing fiber bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033.
[72]  Fu T, Liu Y J, Li Q L, et al. Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials[J]. Optics and Lasers in Engineering, 2009, 47(10): 1056-1062.
[73]  Chen Y, Viresh W, Zimcik D. Development and verification of real-time controllers for F/A-18 vertical fin buffet load alleviation[C]//Proceedings of SPIE Vol. 6173. USA: SPIE, 2006: 1-12.
[74]  Yi G, Liu Y J, Leng J S. Active vibration control of basic structures using macro fiber composites[C]//Proceedings of SPIE Vol. 7977. USA: SPIE, 2011: 1-7.
[75]  Anton S R, Erturk A, Inman D J. Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage[J]. Journal of Aircraft, 2012, 49(1): 292-301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133