全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

基于浸入式边界法的振荡转子叶片数值模拟

DOI: 10.7527/S1000-6893.2013.0517, PP. 2112-2125

Keywords: 叶片颤振,浸入式边界法,流固耦合,叶轮机械,气动弹性稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于流固耦合问题,传统的数值模拟方法由于需要不断的网格重构使得问题变得复杂,本文通过利用浸入式边界法建立了在单一坐标系和网格下求解振荡转子叶片的快速计算模型,从而避免了传统方法中由于需要不断地重构贴体网格造成的数值模拟的复杂性。为了验证该方法的正确性,分别对低KC(Keulegan-Carpenter)数下的振荡圆柱和两自由度振荡圆柱进行了数值模拟,计算结果与以往的试验结果和数值结果吻合得很好,证明了浸入式边界方法的可靠性。在此基础上,对振荡转子叶片进行了数值模拟。结果表明折合速度和叶栅稠度是影响振荡转子叶片的重要因素。并且,值得注意的是这种耦合过程并没有生成贴体网格,因此大大减小了计算时间,这样可以更加快速、准确地模拟真实的叶栅流动情况。

References

[1]  Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.
[2]  He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[3]  He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.
[4]  Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.
[5]  Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[6]  Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347. Reston: AIAA, 2003.
[7]  Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.
[8]  Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079. Reston: AIAA, 2002.
[9]  Gottfried D A. Simulation of fluid-structure interaction in turbomachinery. West Lafayette: Purdue University, 2000.
[10]  Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems, AIAA-2010-1464. Reston: AIAA, 2010.
[11]  Hu P G. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P toolset, AIAA-2010-8224. Reston: AIAA, 2010.
[12]  Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[13]  Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. AIAA Journal of Propulsion and Power, 2009, 25(2): 312-321.
[14]  Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.
[15]  Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20: 229-237.
[16]  Chima R V. Explicit multi-grid algorithm for quasi-three-dimensional viscous flows in turbomachinery[J]. Journal of Propulsion and Power, 1987, 3(5): 397-405.
[17]  Armfield S, Street R. The fractional-step method for the Navier-Stokes equations on staggered grids: the accuracy of three variations[J]. Journal of Computational Physics, 1999, 153(2): 660-665.
[18]  Dutsch H, Durst F, Becker S. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.
[19]  Singh S P, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluid and Structures, 2005, 20(8): 1085-1104.
[20]  Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.
[21]  Gnesin V I, Kolodyazhnaya L V, Rzadkowski R. A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades[J]. Journal of Fluids and Structures, 2004, 19 (8): 1141-1153.
[22]  Denton J D. An improved time-marching method for turbomachinery flow calculation[J]. Journal for Engineering for Power, 1983, 105(3): 514-521.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133