Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.
[2]
He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[3]
He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.
[4]
Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.
[5]
Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[6]
Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347. Reston: AIAA, 2003.
[7]
Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.
[8]
Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079. Reston: AIAA, 2002.
[9]
Gottfried D A. Simulation of fluid-structure interaction in turbomachinery. West Lafayette: Purdue University, 2000.
[10]
Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems, AIAA-2010-1464. Reston: AIAA, 2010.
[11]
Hu P G. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P toolset, AIAA-2010-8224. Reston: AIAA, 2010.
[12]
Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[13]
Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. AIAA Journal of Propulsion and Power, 2009, 25(2): 312-321.
[14]
Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.
[15]
Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20: 229-237.
[16]
Chima R V. Explicit multi-grid algorithm for quasi-three-dimensional viscous flows in turbomachinery[J]. Journal of Propulsion and Power, 1987, 3(5): 397-405.
[17]
Armfield S, Street R. The fractional-step method for the Navier-Stokes equations on staggered grids: the accuracy of three variations[J]. Journal of Computational Physics, 1999, 153(2): 660-665.
[18]
Dutsch H, Durst F, Becker S. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.
[19]
Singh S P, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluid and Structures, 2005, 20(8): 1085-1104.
[20]
Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.
[21]
Gnesin V I, Kolodyazhnaya L V, Rzadkowski R. A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades[J]. Journal of Fluids and Structures, 2004, 19 (8): 1141-1153.
[22]
Denton J D. An improved time-marching method for turbomachinery flow calculation[J]. Journal for Engineering for Power, 1983, 105(3): 514-521.