全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2015 

纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验

DOI: 10.7527/S1000-6893.2014.0341, PP. 2125-2132

Keywords: 流动控制,介质阻挡放电,等离子体,纳秒脉冲,三角翼

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探索纳秒脉冲介质阻挡放电(NSDBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NSDBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30m/s和45m/s时,测力试验结果表明位于机翼前缘的NSDBD能很好地改善三角翼大迎角气动特性,其中来流速度为45m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NSDBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NSDBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。

References

[1]  Li Y H, Liang H, Ma Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1429-1435 (in Chinese). 李应红, 梁华, 马清源,等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的试验研究[J]. 航空学报, 2008, 29(6): 1429-1435.
[2]  Li Y H, Wu Y, Liang H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin (Chinese Ver), 2010, 55(31): 3060-3068 (in Chinese). 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.
[3]  Rethmel C, Little J, Takashima K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators, AIAA-2011-0487[R]. Reston: AIAA,2011.
[4]  Roupassov D V, Nikipelov A A, Nudnova M M,et al.Flow separation control by plasma actuator with nanosecond pulse periodic discharge, AIAA-2008-1367[R]. Reston: AIAA, 2008
[5]  Bisek N J, Poggie J, Nishihara M, et al. Computational and experimental analysis of Mach 5 air flow over a cylinder with a nanosecond pulse discharge, AIAA-2012-0186 [R]. Reston: AIAA, 2012
[6]  Ni F Y, Shi Z W, Du H. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control[J]. Acta Aeronautica et Astronautica Sinica, 2014, (35)3: 657-665 (in Chinese). 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J].航空学报,2014,(35)3: 657-665.
[7]  Kwak D Y, Nelson R C. Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators, AIAA-2010-4837[R]. Reston: AIAA, 2010.
[8]  Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 46(6): 1554-1560.
[9]  Sidorenko A A, Budovskiy A D, Maslov A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54: 1585.
[10]  Zhang P F, Wang J J, Feng L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1): 249-252.
[11]  Hua W Z, Li Y H, Niu Z G, et al. Experiment on low-speed delta wing using pulse nanosecond plasma actuation[J]. Journal of Aerospace Power, 2014, 10(29): 2331-2339 (in Chinese). 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励试验[J].航空动力学报,2014, 10(29): 2331-2339.
[12]  Zhao G Y, Li Y H, Liang H, et al. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J]. Experiments in Fluids, 2015, 56: 1864.
[13]  Zhao G Y, Li Y H, Hua W Z, et al. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 0(0): 1-9.
[14]  Greenblatt D, Washburn A. Influence of finite span and sweep on active flow control efficacy[J]. AIAA Journal, 2008, 46(7): 1675-1694.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133