全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2015 

航空透明聚氨酯胶片动态力学性能实验研究

DOI: 10.7527/S1000-6893.2014.0281, PP. 2236-2243

Keywords: 夹层风挡,透明聚氨酯胶片,Hopkinson杆,温度效应,应变率效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

对夹层玻璃中聚氨酯胶片的动态力学性能进行系统研究,可以为飞机和高铁风挡玻璃抗冲击性能的设计提供可靠的材料数据和模型。利用温度控制的Hopkinson拉、压杆试验装置和微型材料试验机(MTS5587)对聚氨酯胶片在-40~50℃温度范围、0.001~6500s-1应变率范围内的力学行为进行了系统研究。结果表明航空透明聚氨酯的力学性能具有明显的温度敏感性和应变率敏感性,随着应变率提高或温度降低,聚氨酯胶片的流动应力和割线模量也相应增加,表现出明显的应变率和温度效应,同时两者可能有一定的等效性。温度从-20℃下降到-40℃时,应力-应变曲线变化显著,表现出向玻璃态转变的特性。在0℃以上的温度时,同应变率下,动态拉伸应力-应变曲线的应力值要低于动态压缩曲线的应力值。而在温度低于0℃时,在同应变率下,动态拉伸应力-应变曲线的应力值则高于动态压缩曲线的应力值。

References

[1]  Chen W, Lu F, Zhou B. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials[J]. Experimental Mechanics, 2000, 40(1): 1-6.
[2]  Liu J F, Wang Z D, Hu S S. The SHPB experiment technology for low wave impedance porous materials[J]. Journal of Experimental Mechanics,1998, 13(2): 218-223 (in Chinese). 刘剑飞, 王正道, 胡时胜. 低阻抗多孔介质材料的SHPB实验技术[J]. 实验力学, 1998, 13(2): 218-223.
[3]  Zhao H, Gary G. A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1185-1202.
[4]  Song B, Chen W. One-dimensional dynamic compressive behavior of EPDM rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294-301.
[5]  Song B, Chen W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1336-1343.
[6]  Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1914, 213: 437-456.
[7]  Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11): 676.
[8]  Kolsky H. Stress waves in solids[M]. New York: Courier Dover Publications, 1963: 87.
[9]  Polyurethane[EB/OL].[2014-08-13]. http://en.wikipedia.org/wiki/Polyurethane.
[10]  Sharma A, Shukla A, Prosser R. Mechanical characterization of soft materials using high speed photography and split Hopkinson pressure bar technique[J]. Journal of Materials Science, 2002, 37(5): 1005-1017.
[11]  Roland C M,Twigg J N, Vu Y, et al. High strain rate mechanical behavior of polyurea[J]. Polymer, 2007, 48(2): 574-578.
[12]  Yi J, Boyce M C, Lee G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes[J]. Polymer, 2006, 47(1): 319-329.
[13]  Sarva S S, Deschanel S, Boyce M C, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates[J]. Polymer, 2007, 48(8): 2208-2213.
[14]  Shim J, Mohr D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates[J]. International Journal of Impact Engineering, 2009, 36(9): 1116-1127.
[15]  Amirkhizi A V,Isaacs J, Mcgee J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine, 2006, 86(36): 5847-5866.
[16]  Li C, Lua J. A hyper-viscoelastic constitutive model for polyurea[J]. Materials Letters, 2009, 63(11): 877-880.
[17]  Chen W, Zhang B, Forrestal M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39(2): 81-85.
[18]  Wang L, Labibes K, Azari Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J]. International Journal of Impact Engineering, 1994, 15(5): 669-686.
[19]  Zhao H, Gary G, Klepaczko J R. On the use of a viscoelastic split Hopkinson pressure bar[J]. International Journal of Impact Engineering, 1997, 19(4): 319-330.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133