全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2015 

顺轨拦截模式剩余飞行时间估计方法

DOI: 10.7527/S1000-6893.2015.0107, PP. 3082-3091

Keywords: 导弹,目标跟踪,制导律,剩余飞行时间估计,顺轨拦截,机动目标

Full-Text   Cite this paper   Add to My Lib

Abstract:

匹配顺轨和逆轨拦截模式的估计方法是精确计算剩余飞行时间(TGO)的必要条件,适用于逆轨拦截模式的TGO估计方法并不适于顺轨拦截模式。为此,针对顺轨拦截模式,分别提出了拦截机动/非机动目标的TGO估计方法。通过对线性制导方程的变形求解出了拦截弹的飞行弧长,并根据预测的碰撞点位置求得了TGO估计的解析式。该求解方法通用性强,适用于弹道成型制导律的TGO估计。以负比例(RPN)和扩展RPN(ARPN)为制导框架,与经典方法进行对比,所提出的TGO估计方法精确度高,能够有效提高导弹的制导性能。

References

[1]  Adler F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5): 500-507.
[2]  Yang C D, Yang C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577.
[3]  Riggs T L, Jr. Linear optimal guidance for short range air-to-air missiles[C]//Proceedings of National Aerospace and Electronics Conference NAECON'79. Piscataway, NJ: IEEE Press, 1979: 757-764.
[4]  Jeon I, Lee J, Tahk M. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[5]  Dhananjay N, Ghose D. Accurate time-to-go estimation for proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1378-1383.
[6]  Tahk M J, Ryoo C K, Cho H. Recursive time-to-go estimation for homing guidance missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 13-24.
[7]  Zhang Y A, Ma G X. Time-to-go estimation algorithm for the proportional navigation guidance law with a large lead angle[J]. Journal of Harbin Engineering University, 2013,34(11): 1409-1414 (in Chinese). 张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J]. 哈尔滨工程大学学报, 2013, 34(11): 1409-1414.
[8]  Ma G X, Zhang Y A, Li J. Guidance law with multiple constraints and seeker field-of -view limit and the time-to-go estimation[J]. Systems Engineering and Electronics, 2014, 36(8): 1609-1613 (in Chinese). 马国欣, 张友安, 李君. 带导引头视场限制的多约束导引律及剩余时间估计[J]. 系统工程与电子技术, 2014, 36(8): 1609-1613.
[9]  Liu P, Sun R, Li W. Homing guidance law with falling angle and flying time control[J]. Journal of Harbin Institute of Technology, 2014, 21(1): 55-61.
[10]  Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[11]  Kim T H, Lee C H, Tahk M J. Time-to-go polynomial guidance with trajectory modulation for observability enhancement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.
[12]  Prasanna H M, Ghose D. Retro-proportional-navigation: A new guidance law for interception of high-speed targets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 377-386.
[13]  Shima T. Intercept-angle guidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 484-492.
[14]  Tal S, Golan O M. Head pursuit guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1437-1444.
[15]  Zarchan P. Tactical and strategic missile guidance[M]. 37rd ed. Reston: AIAA, 2002: 15.
[16]  Siouris G M. Missile guidance and control systems[M]. Berlin: Springer, 2004: 195-196.
[17]  Ben-Asher J Z, Farber N, Levinson S. New proportional navigation law for ground-to-air systems[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 822-825.
[18]  Byung S K, Jang G L, Hyung S H. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.
[19]  Akhil G, Ghose D. Biased PN based impact angle constrained guidance using a nonlinear engagement model[C]//Proceedings of 2012 American Control Conference (ACC).Piscataway, NJ: IEEE Press, 2012: 950-955.
[20]  Yuan P, Chern J. Ideal proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1161-1165.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133