全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2015 

一种高光谱图像的双压缩感知模型

DOI: 10.7527/S1000-6893.2014.0350, PP. 3041-3049

Keywords: 高光谱图像,压缩感知,数据压缩,线性混合模型,端元提取,丰度估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

高光谱图像因其海量数据性,给存储、传输及后续分析处理带来了挑战。压缩感知理论提供了一种全新的信号采集框架。针对高光谱数据的三维特性,提出一种双压缩感知的采样与重构模型。该模型在采样阶段兼顾高光谱数据的空间和谱间稀疏特性,构造了能同时实现空间和谱间压缩采样的感知矩阵;重构阶段不同于传统的压缩感知重构方法直接重构高光谱数据,而是将高光谱数据分离成端元和丰度分别进行重构,然后利用重构的端元和丰度信息合成高光谱数据。实验结果表明,所提双压缩感知在低采样率下重构精度较三维压缩采样提高了10dB以上,更为显著的是运算速度提升了3个数量级,同时该方法还便于获得端元和丰度信息。

References

[1]  Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2]  Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[3]  Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[4]  Shu X B, Ahuja N. Imaging via three-dimensional compressive sampling (3DCS)[C]//IEEE International Conference on Computer Vision. Washington, D.C.: IEEE Computer Society, 2011: 439-446.
[5]  Liu H Y, Wu C K, Lyu P, et al. Compressed hyperspectral image sensing reconstruction based on interband prediction and joint optimization[J]. Journal of Electronics & Information Technology, 2011, 33(9): 2248-2252 (in Chinese). 刘海英, 吴成柯, 吕沛, 等. 基于谱间预测和联合优化的高光谱压缩感知图像重构[J]. 电子与信息学报, 2011, 33(9): 2248-2252.
[6]  Liu H Y, Li Y S, Wu C K, et al. Compressed hyperspectral image sensing based on interband prediction[J]. Journal of Xidian University, 2011, 38(3): 37-41 (in Chinese). 刘海英, 李云松, 吴成柯, 等. 一种高重构质量低复杂度的高光谱图像压缩感知[J]. 西安电子科技大学学报, 2011, 38(3): 37-41.
[7]  Feng Y, Jia Y B, Cao Y M, et al. Compressed sensing projection and compound regularizer reconstruction for hyperspectral images[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1466-1473 (in Chinese). 冯燕, 贾应彪, 曹宇明, 等. 高光谱图像压缩感知投影与复合正则重构[J]. 航空学报, 2012, 33(8): 1466-1473.
[8]  Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
[9]  Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[10]  Fowler J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230-2242.
[11]  Fowler J E. Compressive-projection principal component analysis and the first eigenvector[C]//Data Compression Conference. Washington, D.C.: IEEE Computer Society, 2009: 223-232.
[12]  Golbabaee M. Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery[C]//International Conference on Acoustics, Speech, and Signal Processing. Washington, D.C: IEEE Computer Society, 2012: 2741-2744.
[13]  Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals[C]//Asilomar Conference on Signals, Systems and Computers. Washington, D.C: IEEE Computer Society, 2005: 1537-1541.
[14]  Duarte M F, Baraniuk R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504.
[15]  Wang Z, Feng Y, Jia Y. Spatial-spectral compressive sensing of hyperspectral image[C]//IEEE International Conference on Information Science and Technology. Washington, D.C.: IEEE Computer Society, 2013: 1254-1259.
[16]  Li C B, Ting S, Kelly K F, et al. A compressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(3): 1200-1210.
[17]  Zare A, Gader P, Gurumoorthy K S. Directly measuring material proportions using hyperspectral compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 323-327.
[18]  Heylen R, Burazerovic D, Scheunders P. Fully constrained least squares spectral unmixing by simplex projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4112-4122.
[19]  Jiao L C, Yan S Y, Liu F, et al. Development and prospect of compressive sensing [J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662 (in Chinese). 焦李成, 杨淑媛, 刘芳, 等. 图像压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662.
[20]  Vane G, Green R O, Chrien T G, et al. The airborne visible infrared imaging spectrometer (aviris)[J]. Remote Sensing of Environment, 1993, 44(2): 127-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133