全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2011 

电弧熔炼态Laves相Cr2Nb/Cr合金的微观组织演变

DOI: 10.3724/SP.J.1037.2010.00700, PP. 663-670

Keywords: 真空非自耗电弧熔炼,Laves相Cr2Nb,离异共晶,共晶领先相

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用真空非自耗电弧熔炼法制备了Cr-12%Nb(原子分数,下同)和Cr-20%Nb2种成分合金的纽扣锭,利用XRD,OM,SEM和EDS对电弧熔炼态纽扣锭不同位置的组织及其竞争生长进行了研究.结果表明Cr-12%Nb合金纽扣锭底部为细小的离异共晶,中部和顶部则由粗大的初生Cr相和共晶组织(Cr2Nb+Cr)组成.而Cr-20%Nb纽扣锭底部出现的是胞状层片共晶组织,层片间距为0.3μm,随着距纽扣锭底部距离的增加,冷却速率逐渐降低,凝固组织中相继出现Cr2Nb板条枝晶和花瓣状Cr2Nb枝晶.同时,基于TMK快速凝固共晶模型和BCT枝晶生长模型,通过计算并比较共晶组织和Laves相Cr2Nb枝晶界面生长温度,借助最高界面生长温度判据,很好地解释了Cr-20%Nb合金凝固组织的演变及其形成原因.

References

[1]  Kazantzis A V, Aindow M, I P Jones, Triantafyllidis G K, Hosson J Th M De. Acta Mater, 2007; 55: 1873
[2]  Von Keitz A, Sauthoff G. Intermetallics, 2002; 10: 497
[3]  Liu C T, Zhu J H, Brady M P, McKamey C G, Pike L M. Intermetallics, 2000; 8: 1119
[4]  Machon L, Sauthoff G. Intermetallics, 1996; 4: 469
[5]  Liu C T, Tortorelli P F, Horton J A, Carmichael C A. Mater Sci Eng, 1996; A214: 23
[6]  Xiao X, Lu S Q, Ma Y Q, Hu P, Huang M G, Nie X W.Rare Met Mater Eng, 2008; 37: 119
[7]  (肖 璇, 鲁世强, 马燕青, 胡 平, 黄明刚, 聂小武. 稀有金属材料与工程, 2008; 37: 119)
[8]  Bewlay B P, Lipsitt H A, Jackson M R. Mater Sci Eng, 1995; A192-193: 534
[9]  Bewlay B P, Sutliff J A, Jackson M R. Acta Metall Mater, 1994; 42: 2869
[10]  He Y D, Qu X H, Huang B Y. Rare Mater, 2003; 3: 303
[11]  (何玉定, 曲选辉, 黄伯云. 稀有金属, 2003; 3; 303)
[12]  Thoma D J, Perepezko J H. Mater Sci Eng,1992; A156: 97
[13]  Thoma D J, Perepezko J H. Mater Sci Eng, 1992; A156: 97
[14]  Kumar K S, Hazzledine P M. Intermetallics, 2004; 12: 763
[15]  Kazantzis A V, Aindow M, Jones I P, Triantafyllidis G K, De Hosson J Th M. Acta Mater, 2007; 55: 1873
[16]  Tiller W A. The Science of Crystallization: Macroscopic Phenomena and Defect Generation. Cambridge: Cambridge University Press, 1992: 254
[17]  Kurz W, Fisher D J. Fundamentals of Solidification. 4nd Ed. Switzerland: Trans Tech Publications Ltd., 2005: 108
[18]  Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials, Beijing: Science Press, 2008: 308
[19]  (傅恒志, 郭景杰, 刘 林, 李金山. 先进材料定向凝固, 北京: 科学出版社, 2008: 308)
[20]  Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971
[21]  Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing: Principles and Technology IV. Bataon Rouge LA: Clatitor’s Publishing Division, 1988: 13
[22]  Li M, Kuribayashi K. Metall Mater Trans, 2003; 34A: 2999
[23]  Liu R, Volkmann T, Herach M. Acta Mater, 2001; 49439
[24]  Umeda T, Okane T, Kurz W. Acta Mater, 1996; 44: 4209
[25]  Hu H Q. Theory of Metal Solidification, 2nd Ed. Beijing: China Machine Press, 2007: 168
[26]  (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2007: 168)
[27]  Ohno A. translated by Xing J D, Solidification of Metals: Theory, Practice and Application. Beijing: China Machine Press, 1990: 117
[28]  (Ohno A, 刑建东 译. 金属的凝固---理论、实践及应用. 北京: 机械工业出版社, 1990: 117)
[29]  Stefanescu D M. Science and Engineering of Casting Solidification, 2nd Ed. Berlin: Springer, 2009: 195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133