全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

考虑固溶及时效处理的镁合金铸件微观组织模拟及力学性能预测

DOI: 10.3724/SP.J.1037.2011.00586, PP. 363-370

Keywords: 镁合金,微观组织演化模型,力学性能模型,汽车轮毂

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于改进元胞自动机(CA)模型,综合考虑铸造、固溶处理和时效处理过程中的微观组织转变,建立了镁合金铸件微观组织演化模型;在分析Mg-Al系镁合金第二相析出过程和强化机理的基础上,建立了镁合金铸件力学性能模型;针对镁合金汽车轮毂,采用建立的模型,模拟预测了铸件关键部位的微观组织演化和力学性能.结果表明,铸态和固溶处理条件下屈服强度的预测值与实际测量平均值吻合较好,而时效处理状态下的预测值与实测平均值有一定差别,抗拉强度的模拟预测值与实际测量的平均值吻合较好.

References

[1]  Huo L, Han Z Q, Liu B C. Acta Metall Sin, 2009; 45: 1414
[2]  (霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)
[3]  Huo L, Han Z Q, Liu B C. In: Agnew S, Neelameggham N R, Nyberg E A eds., Magnesium Technology 2010. Warrendale, PA: The Minerals, Metals and Materials Society, 2010: 601
[4]  Yin H B, Felicelli S D. Modell Simul Mater Sci Eng, 2009; 17: 1
[5]  Huo L. PhD Thesis, Tsinghua University, Beijing, 2011
[6]  (霍亮. 清华大学博士学位论文, 北京, 2011) Maltais A, Dub′e D, FisetM, Laroche G, Turgeon S. Mater Charact, 2004; 52: 103
[7]  Deschamps A, Brechet Y. Acta Mater, 1998; 47: 293
[8]  Zeldovich J B. Acta Physicochim, 1943; 18: 1
[9]  Hillert M, Hoglund L, Agren J. Acta Mater, 2003; 51: 2089
[10]  Lifshitz I, Slyozova V. J Phys Chem Solids, 1961; 19: 35
[11]  Wagner C Z. Elektrochem, 1961; 65: 581
[12]  Voorhees P W. Annu Rev Mater Sci, 1992; 22: 197
[13]  Hutchinson C R, Nie J F, Gorsse S. Metall Mater Trans, 2005; 36A: 2093
[14]  C′aceres C H, Davidson C J, Griffiths J R, Newton C L. Mater Sci Eng, 2002; A325: 344
[15]  Akhtar A, Teghtsoonian E. Acta Metall, 1969; 17: 1339
[16]  Fribourg G, Brechet Y, Deschamps A, Simar A. Acta Mater, 2011; 59: 3621
[17]  Smoljan B, Iljki′c, D, Tomaˇsi′c N. J Achiev Mater Manuf Eng, 2010; 40: 155
[18]  Panuˇskov′a M, Tillov′a E, Chalupov′a M. Strength Mater, 2008; 40: 98
[19]  Liu Z Y, Xu Q Y, Liu B C. Acta Metall Sin, 2007; 43: 367
[20]  (刘志勇, 许庆彦, 柳百成. 金属学报, 2007; 43: 367)
[21]  Celotto S. Acta Mater, 2000; 48: 1775
[22]  Gharghouri M A, Weatherly G C, Embury J D, Root J. Philos Mag, 1999; 79A: 1671
[23]  Volmer M, Weber A. Phys Chem, 1926; 119: 277
[24]  Becker R, Doring W. Ann Phys, 1935; 24: 719
[25]  Akhtar A, Teghtsoonian E. Philos Mag, 1972; 25: 897
[26]  Lukac P. Phys Status Solidi, 1992; 131A: 377
[27]  Nussbaum G, Sainfort P, Regazzoni G, Gjestland H. Scr Metall, 1989; 23: 1079
[28]  Shaw C, Jones H. Mater Sci Eng, 1997; A226: 856
[29]  C′aceres C, Rovera D. J Light Met, 2001; 1: 151
[30]  Hall E O. Proc Phys Soc Lond, 1951; 64B: 747
[31]  Petch N J. J Iron Steel Inst, 1953; 174: 25
[32]  Hauser F E, Landon P R, Dorn J E. Trans Am Inst Mining Metall Eng, 1956; 206: 589
[33]  Brown L M, Ham P K. Strengthening Methods in Crystals. London: Elsevier, 1971: 10
[34]  Miller W S, Humphreys F J. Scr Metall, 1991; 25: 33
[35]  Armstrong R, Douthwaite R M, Codd I, Petch N J. Philos Mag, 1962; 7: 45
[36]  Leroy G, Embury J D, Edward G, Ashby MF. Acta Metall, 1981; 29: 1509
[37]  Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1185
[38]  Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1201
[39]  Brown L M, Clarke D R. Acta Metall, 1975; 23: 821
[40]  Lemaitre J, Chaboche J L. Mechanics of Solid Materialsrm. Cambridge: Cambridge University Press, 1990: 167

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133