OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
表面滚压对LZ50车轴钢疲劳短裂纹行为的影响
DOI: 10.3724/SP.J.1037.2012.00169, PP. 922-928
Keywords: 疲劳,短裂纹,表面滚压,扩展率,LZ50车轴钢
Abstract:
完成了6根表面经滚压处理的漏斗形圆棒试样疲劳短裂纹复型实验,结果表明其短裂纹行为表现出明显的微观结构短裂纹(MSC)和物理短裂纹(PSC)2阶段特征.在MSC阶段,由于不同微观结构障碍的阻碍,主导短裂纹出现2次较明显的扩展减速,进入PSC阶段后,随着主导短裂纹尺度的增长,该现象不再显著.与表面未经滚压的试样相比,在给定主导短裂纹尺度条件下,滚压试样的裂纹扩展速率低得多,这种差异在MSC阶段可达1个数量级.滚压试样平均疲劳寿命达到未滚压试样的6.4倍.表面滚压处理有效抑制了微裂纹的形核与合并,改善了局部微观结构条件,并推迟了MSC与PSC过渡阶段的到来,提高了材料的抗疲劳性能.对主导短裂纹尺度、疲劳寿命分数和有效短裂纹密度3种特征参量进行分析,确定了其良好假设分布和统计演化规律.
References
[1] | Liu E Z, Zheng Z, Tong J, Ning L K, Guan X R. Acta Metall Sin, 2010; 46: 708
|
[2] | (刘恩泽, 郑 志, 佟健, 宁礼奎, 管秀荣. 金属学报, 2010; 46: 708)
|
[3] | Hu Y H, Zhang Z, Zhong Q P, Han B C. J Mech Strength, 2009; 31: 979
|
[4] | (胡燕慧, 张 峥, 钟群鹏, 韩邦成. 机械强度, 2009; 31: 979)
|
[5] | (Suresh S著, 王中光译. 材料的疲劳. 第二版, 北京: 国防工业出版社, 1999: 387)
|
[6] | Pearson S. Eng Fract Mech, 1975; 7: 235
|
[7] | Maluf O, Milan M T, Spinelli D. J Mater Eng Perform, 2004; 13: 195
|
[8] | Ueji R, Tsuji N, Minamino Y. Acta Mater, 2002; 50: 4177
|
[9] | Mara N A, Sergueeva A V, Mara T D. Mater Sci Eng, 2007; A463: 238
|
[10] | Jia G W, Hua L, Mao H J. J Mater Process Technol, 2007; 187-188: 562
|
[11] | Ma B, Tieu A K, Lu C, Jiang Z. J Mater Process Technol, 2002; 125-126: 657
|
[12] | Yang B, Zhao Y X. Adv Mater Res, 2012; 463: 85
|
[13] | Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 931
|
[14] | (赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 931)
|
[15] | Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 937
|
[16] | (赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 937)
|
[17] | Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2003; 24: 127
|
[18] | (赵永翔, 杨冰, 高庆. 核动力工程, 2003; 24: 127)
|
[19] | Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2005; 26:584
|
[20] | (赵永翔, 杨冰, 高庆. 核动力工程, 2005; 26: 584)
|
[21] | Zhao Y X. PhD Thesis, Southwest Jiaotong University,Chengdu, 1998
|
[22] | (赵永翔. 西南交通大学博士学位论文, 成都, 1998)
|
[23] | Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 459
|
[24] | Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 75
|
[25] | Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 93
|
[26] | Obrtl′?k K, Pol′ak J, H′ajek M, Vaˇsek A. Int J Fatigue, 1997; 19: 471
|
[27] | Luo J, Bowen P. Int J Fatigue, 2004; 26: 113
|
[28] | Ortiz J, Cisilino A P, Otegui J L. Fatigue Fract Eng Mater Struct, 2001; 24: 591
|
[29] | Ding C F, Liu J Z, Wu X R. J Aeronaut Mater, 2005; 25(6): 11
|
[30] | (丁传富, 刘建中, 吴学仁. 航空材料学报, 2005; 25(6): 11)
|
[31] | Suresh S, translated by Wang Z G. Fatigue of Materials. 2nd Ed, Beijing: National Defense Industry Press, 1999: 387
|
[32] | Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 469
|
[33] | Zhao Y X. J Mater Sci Technol, 2003; 19: 129
|
[34] | Yang B, Zhao Y X. Int J Fatigue, 2012; 35: 71
|
[35] | Yang B, Zhao Y X. Key Eng Mater, 2011; 474: 979
|
[36] | Yang B, Zhao Y X. Adv Mater Res, 2010; 118: 75
|
[37] | Zhao Y X, Sun Y F, Gao Q. J Mech Strength, 2001; 23: 102
|
[38] | (赵永翔, 孙亚芳, 高庆. 机械强度, 2001; 23: 102)
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|