全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

低碳钢中残余奥氏体的调控及对力学性能的影响

DOI: 10.3724/SP.J.1037.2012.00210, PP. 1074-1080

Keywords: 低碳钢,残余奥氏体,马氏体,亚温铁素体,TRIP效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用完全淬火+两相区再加热-淬火-分配(IQ$\&$P)热处理工艺对0.23C-1.8Mn-1.35Si钢进行处理,获得了具有亚温铁素体、马氏体以及广泛分布于原奥氏体晶界、相界等处的残余奥氏体等构成的多相组织.利用SEM,XRD以及EBSD等对不同热处理阶段钢的微观组织进行了表征.结果证实,该多相组织低合金钢中残余奥氏体的获得主要依赖于以下两点一是两相区再加热阶段逆转变奥氏体组织中的富Mn富C,二是淬火--分配阶段残留奥氏体在分配过程中的二次富C,通过上述的两步元素富集处理可以使该低碳钢在室温下获得超过10%含量的残余奥氏体,而残留奥氏体在分配过程中的二次富C则对该类钢中残余奥氏体的形成及其在室温下的稳定化起到了至关重要的作用.由于广为分布的残余奥氏体在形变过程中的TRIP效应,使得该类钢种在拉伸变形过程中获得了持续的加工硬化能力,从而实现了强度与塑性的良好结合.测试结果表明,IQ&P钢的强塑积超过了26GPa?%,屈服强度大于600MPa,抗拉强度超过900MPa,均匀延伸在16\%以上,常温半厚冲击韧性达到了39J.

References

[1]  McFarlan W H. US Pat, 3378360, 1968
[2]  Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[3]  Girault E, Jacques P, Harlet Ph, Mols K, Van Humbeeck J, Aernoudt E, Delannay F. Mater Charact, 1998; 40: 111
[4]  Ray A, Dhua S K. Mater Charact, 1996; 37: 1
[5]  Speer J G, Streicher A M, Matlock D K, Rizzo F C, Krauss G. In: Damm E B, Merwin M eds., Austenite Formation and Decomposition, Warrendale: TMS, 2003: 505
[6]  Edmonds DV, He K, Rizzo F C, De CoomanB C,Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[7]  De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Gyeongju: The Korean Institute of Metals and Materials, 2006: 798
[8]  Streicher A M, Speer J G, Matlock D K, De Cooman B C. In: Speer J G ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: AIST, 2004: 51
[9]  Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Opin Curr Solid State Mater Sci, 2004; 8: 219
[10]  Sugimoto K, Tsunezawa M, Hojo T, Ikeda S. ISIJ Int, 2004; 44: 1608
[11]  Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141
[12]  Shi J, Sun X J, Wang M Q, Hui W J, Dong H, Cao W Q. Scr Mater, 2010; 63: 815
[13]  Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489
[14]  (张 柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董 瀚. 金属学报, 2011; 47: 489)
[15]  Santofimia M J, Zhao L, Petrov R, Kwakernaak C, Sloof W G, Sietsma J. Acta Mater, 2011; 59: 6059
[16]  Nouri A, Saghafian H, Kheirandish Sh. J Iron Steel Res Int, 2010; 17(5): 44
[17]  Speich G R, Demarest V A, Miller R L. Metall Mater Trans, 1981; 12A: 1419
[18]  Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2011; 42A: 3620
[19]  Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301
[20]  Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570
[21]  Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014
[22]  Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[23]  Gr¨assel O, Frommeyer G. Mater Sci Technol, 1998; 14: 1213
[24]  Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319-321: 246
[25]  Barnett M R. Mater Sci Eng, 2007; A464: 1
[26]  Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[27]  Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[28]  Sakuma Y, Matsumura O, Takechi H. Metall Mater Trans, 1991; A22: 489
[29]  Herrera C, Ponge D, Raabe D. Acta Mater, 2011; 59: 4653
[30]  Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442
[31]  Li H Y, Lu X W, Wu X C, Min Y A, Jin X J. Mater Sci Eng, 2010; A527: 6255
[32]  Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; A40: 46
[33]  Mukherjee M, Mohanty O N, Hashimoto S, Hojo T, Sugimoto K. ISIJ Int, 2006; 46: 316
[34]  Fan X. Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159
[35]  (范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)
[36]  Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 1992; 32: 1311
[37]  Cullity B D. Elements of X-ray Diffraction. Massachusetts: Addison-Wesley, 1978: 359
[38]  Santofimia M J, Nguyen-Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. Mater Sci Eng, 2010; A527: 6429
[39]  Thomas G A, Speer J G, Matlock D K. Metall Mater Trans, 2011; 42A: 3652

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133