全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究

DOI: 10.3724/SP.J.1037.2012.00107, PP. 1123-1131

Keywords: 镁合金,本构关系,流变应力,神经网络,动态再结晶,热加工图

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Gleeble3800热模拟机对Mg-6Zn-0.5Zr-0.5Ce镁合金进行了高温压缩变形实验,分析了该合金在变形温度为523-673K,应变速率为0.001-1.0s-1条件下的流变应力变化规律.结果表明,变形温度和应变速率对流变应力具有显著影响,流变应力随变形温度的升高和应变速率的降低而减小;在较高变形温度和较小变形速率下,流变应力随真应变的增加至峰值后即呈稳态流变特征.采用双曲正弦函数拟合曲线,确定了该合金的变形表观激活能为145.76kJ/mol;建立了可用于描述该镁合金的流变应力的单隐层前馈误差反向传播人工神经网络模型.利用动态材料模型构建了热加工图,结合组织观察认为,该合金在648-673K,应变速率为0.1-1.0s-1条件下发生动态再结晶;而同样应变速率下,温度低于573K时材料在变形过程中由于机械孪生导致开裂.由交滑移所产生的机械回复位错控制着界面的形成,且动态再结晶模型表明该合金再结晶主要受界面迁移所控制.

References

[1]  Xia C Q, Wang Y N, Wu A R, Gu Y. J Cent South Univ Technol, 2005; 12: 515
[2]  Luo Z P, Song D Y, Zhang S Q. J Alloys Compd, 1995; 230: 109
[3]  Zhao K Y, Peng X D, Xie W D, Wei Q Y, Yang Y, Wei G B. Trans Nonferrous Met Soc China, 2010; 20(suppl): s324
[4]  Ma C, Liu M, Wu G, Ding W, Zhu Y. Mater Sci Eng, 2003; A349: 207
[5]  Zhang D F, Qi F G, Lan W, Shi G L, Zhao X B. Trans Nonferrous Met Soc China, 2011; 21: 703
[6]  Luo A A, Mishra R K, Sachdev A K. Scr Mater, 2011; 64: 410
[7]  Yu K, LiWX, Zhao J,Ma Z Q, Wang R. Scr Mater, 2003; 48: 1319
[8]  Qin Y J, Pan Q L, He Y B, LiWB, Liu X Y, Fan X. Acta Metall Sin, 2009; 45: 887
[9]  (覃银江, 潘清林, 何运斌, 李文斌, 刘晓艳, 范曦. 金属学报, 2009; 45: 887)
[10]  Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378
[11]  (王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)
[12]  Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096
[13]  (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[14]  Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562
[15]  Chino Y, Kado M, Mabuchi M. Acta Mater, 2008; 56: 387
[16]  Zhou H T, Zeng X Q, Liu L F, Zhang Y, Zhu Y P, Ding W J. J Mater Sci, 2004; 39: 7061
[17]  Fan Y, Wu G H, Zhai C Q. Mater Sci Eng, 2006; A433: 208
[18]  Qin Y J, Pan Q L, He Y B, Li W B, Liu X Y, Fan X. Mater Manuf Process, 2010; 25: 539
[19]  Chun M S, Biglou J, Lenard J G, Kim J G. J Mater Process Technol, 1998; 86: 245
[20]  Reddy N S, Lee Y H, Park C H, Lee C S. Mater Sci Eng, 2008; A492: 276
[21]  Bariani P F, Bruschi S, Negro T D. J Mater Process Technol, 2004; 152: 395
[22]  Bahrami A, Anijdan S H M, Hosseini H R M, Shafyei A, Narimani R. Comput Mater Sci, 2005; 34: 335
[23]  Chen Z Y, Li Z Q, Yu C. Mater Sci Eng, 2011; A528: 961
[24]  Peng W P, Li P J, Zeng P, Lei L P. Mater Sci Eng, 2008; A494: 173
[25]  Poletti C, Dieringa H, Warchomicka F. Mater Sci Eng, 2009; A516: 138
[26]  Prasad Y V R K. J Mater Eng Perform, 2003; 12: 638
[27]  Slooff F A, Dzwonczyk J S, Zhou J, Duszczyk J, Katgerman L. Mater Sci Eng, 2010; A527: 735
[28]  Wang C Y, Wang X J, Chang H, Wu K, ZhengMY. Mater Sci Eng, 2007; A464: 52
[29]  Wang Y, Zhang Y, Zeng X, Ding W. J Mater Sci, 2006; 41: 3603
[30]  Zhou H T, Li Q B, Zhao Z K, Liu Z C,Wen S F, Wang Q D. Mater Sci Eng, 2010; A527: 2022
[31]  Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127
[32]  McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[33]  Deng Y, Yin Z M, Huang J W. Mater Sci Eng, 2011; A528: 1780
[34]  Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199
[35]  Ma M L, Zhang K, Li X G, Li Y J, Zhang K. Trans Nonferrous Met Soc, 2008; 18(Suppl): s132
[36]  Zhu Y C, Zeng W D, Sun Y, Feng F, Zhou Y G. Comput Mater Sci, 2011; 50: 1785
[37]  Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218
[38]  (鞠 \ \ 泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)
[39]  Ravichandran N. J Mater Eng Perform, 2003; 12: 653
[40]  Derby B. Scr Metall Mater, 1992; 27: 1581

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133