全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Ni-Ag偏晶合金凝固过程研究

DOI: 10.3724/SP.J.1037.2012.00422, PP. 1381-1386

Keywords: Ni-Ag偏晶合金,液-液相变,快速凝固,喷铸,模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

对Ni-Ag偏晶合金开展了喷铸快速凝固实验,获得了富Ag相粒子弥散分布于Ni基体相的复合凝固组织.建立了Ni-Ag偏晶合金喷铸快速凝固过程中组织演变的动力学模型,模拟分析了喷铸Ni-Ag合金凝固组织形成过程.结果表明在喷铸快速凝固条件下,Ni-Ag合金液-液相变过程中富Ag相液滴的Ostwald粗化作用很弱,初生富Ag相粒子的弥散度主要由液-液相变过程中富Ag相液滴形核率决定,初生富Ag相粒子的数量密度和平均半径与液-液相变过程中富Ag相液滴形核阶段熔体冷却速率间满足N\propto\dot{T}Nuc1.8和\propto\dot{T}Nuc-0.6的指数关系.

References

[1]  Tsuji K, Inada H, Kojima K, Satoh M, Higashi K, Miyanami K, Tanimura S. J Mater Sci, 1992; 27: 1179
[2]  Michal R, Saeger K E. IEEE Trans Comp Hybrids Manuf Technol, 1989; 12: 1
[3]  Zhang Z Y, Nenoff T M, Huang J Y, Berry D T, Provencio P P. J Phys Chem, 2009; 113C: 1155
[4]  Xie M, Zheng F Q,Wei J, Liu J L, Hu J S, Gu J Z, Li X. Precious Met, 1997; 18: 1
[5]  (谢 明, 郑福前, 魏 军, 刘建良, 胡建松, 顾江镇, 李 雄. 贵金属, 1997; 18: 1)
[6]  Liu Z J, Cao J, Qu X H, Huang B Y, Li Z Y, Chen S Q, Lei C M. Chin Pat, 00103911.3, 2000
[7]  (刘志坚, 曹健, 曲选辉, 黄伯云, 李志友, 陈仕奇, 雷长明. 中国专利, 00103911.3, 2000)
[8]  Dawson A W, Malik K L. US Pat, 5497133, 1996
[9]  Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907
[10]  (崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)
[11]  Shi R P, Wang Y, Wang C P, Liu X J. Appl Phys Lett, 2011; 98: 204106
[12]  Wang W L, Li Z Q, Wei B. Acta Mater, 2011; 59: 5482
[13]  Zhou F M, Sun D K, Zhu M F. Acta Phys Sin, 2010; 59: 3394
[14]  (周丰茂, 孙东科, 朱鸣芳. 物理学报, 2010; 59: 3394)
[15]  Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219
[16]  (左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)
[17]  Zhao J Z, Gao L L, He J, Wang J T, Chen G Y. Acta Metall Sin, 2006; 42: 113
[18]  (赵九洲, 高玲玲, 何 杰, 王江涛, 陈桂云. 金属学报, 2006; 42: 113)
[19]  Qin G Y, Wang J H, Zhao H Z, Ning Y T, Xu S Y, Guo J X. Chin J Nonferrous Met, 2009; 19: 286
[20]  (秦国义, 王剑华, 赵怀志, 宁远涛, 许思勇, 郭锦新. 中国有色金属学报, 2009; 19: 286)
[21]  Kuntyi O I, Olenych R R. Russ J Appl Chem, 2005; 78: 556
[22]  Zhao J Z, Li H L, Xing C Y, Zhang X F, Wang Q L, He J. Comput Mater Sci, 2010; 49: 121
[23]  He J, Zhao J Z, Ratke L. Acta Mater, 2006; 54: 1749
[24]  Hu Z Q, Zhang H F. Acta Metall Sin, 2010; 46: 1391
[25]  (胡壮麒, 张海峰. 金属学报, 2010; 46: 1391)
[26]  Zhao J Z, Guo J J, Jia J, Li Q C. Trans Nonferrous Met Soc China, 1995; 5: 85
[27]  Zhao J Z, Gao L L, He J. Appl Phys Lett, 2005; 87: 131905
[28]  Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 23
[29]  Granasy L, Ratke L. Scr Metall Mater, 1993; 28: 1329
[30]  Liu X J, Gao F, Wang C P, Ishida K. J Electron Mater, 2008; 37: 210
[31]  Dinsdale A T. Calphad, 1991; 15: 317
[32]  Kaptay G. Mater Sci Forum, 2006; 508: 269
[33]  Kaban I G, Hoyer W. Phys Rev, 2008; 77B: 125426
[34]  Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed, Oxford: Butterworth-Heinemann Ltd., 1992: 14-7
[35]  Pommrich A I, Meyer A, Holland-Moritz D, Unruh T. Appl Phys Lett, 2008; 92: 241922
[36]  Roy A K, Chhabra R P. Metall Mater Trans, 1988; 19A: 273
[37]  Su X P, Yang S, Wang J H, Tang N-Y, Yin F C, Li Z, Zhao M X. J Phase Equilib Diffus, 2010; 31: 333
[38]  Louzguine-Luzgin D V, Setyawan A D, Kato H, Inoue A. Appl Phys Lett, 2006; 88: 251902

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133