全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响

DOI: 10.3724/SP.J.1037.2012.00305, PP. 1290-1298

Keywords: HSLA100钢,奥氏体晶粒大小,相变,韧性,晶体学包

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Gleeble-3500热模拟机研究了低冷速条件下奥氏体化温度对高强度低合金钢相变组织及-20℃冲击韧性的影响.研究发现,随着奥氏体化温度的升高,显微组织由粒状贝氏体逐渐变为板条贝氏体.奥氏体化温度为1000℃时冲击韧性最佳,显微组织中马氏体/奥氏体(M/A)岛细小弥散且大角晶界密度最大.低于1000℃奥氏体化时M/A岛粗化显著,大角晶界密度较低;而高于1000℃时,虽然M/A岛细小弥散,但是大角晶界密度有所下降.动力学分析表明,随着奥氏体化温度的升高,相变起始温度逐渐下降,转变速率不断加快,较低的相变起始温度及较快的转变速率有利于M/A岛细化.所有转变过程均可分为贝氏体转变及马氏体转变两个阶段,1000℃奥氏体化时贝氏体转变分数最大,转变最完全.晶体学分析进一步显示,当M/A岛得到细化时(奥氏体化温度1000℃及1300℃),除原奥氏体晶界外,更多大角晶界来源于发生协变相变时,晶体学集合内不同Bain组之间的界面.当奥氏体化温度过高时,在粗大的奥氏体晶粒内部,集合内的相变产物由单一Bain组主导,从而导致大角晶界密度的降低及冲击韧性的下降.

References

[1]  Otani K, Hattori K, Muraoka H, Kawazoe H, Tsuruta S. Nippon Steel Technol Rep, 1993; 58: 292
[2]  Hase K, Hoshino T, Amano K. Kawasaki Steel Technol Rep, 2002; 47: 35
[3]  Zhang W, Wu X C, Min Y A. Trans Mater Heat Treat, 2008; 29: 78
[4]  (张伟, 吴晓春, 闵永安. 材料热处理学报, 2008; 29: 78)
[5]  Yang H S, Bhadeshia H K D H. Scr Mater, 2009; 60: 493
[6]  Shang C J, Yang S W, Wang X M, Hou H X, Yu G L, Wang W Z. Iron Steel, 2005; 40(4): 57
[7]  (尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲. 钢铁, 2005; 40(4): 57)
[8]  Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2003; 39: 1019
[9]  (尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)
[10]  Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563
[11]  Li Y and Baker T N. Mater Sci Technol, 2010; 26: 1029
[12]  Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46
[13]  Sungtak L, Byung C K, Dongil K. Metall Mater Trans, 1993; 24A: 1133
[14]  Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26
[15]  Lambert-Perlade A, Gourgues A F, Besson J, Sturel T, Pineau A. Metall Mater Trans, 2004; 35A: 1039
[16]  Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541
[17]  Chang L C. Mater Sci Eng, 2004; A368: 175
[18]  Quidort D, Brchet Y. ISIJ Int, 2002; 42: 1010
[19]  Jones S J, Bhadeshia H K D H. Acta Mater, 1997; 45: 2911
[20]  Hatano H, Kawano H, Okano S. Kobe Steel Technol Rep, 2004; 54(2): 105
[21]  Amano K, Kawabata F, Kubo T. Kawasaki Steel Technol Rep, 1999; 41: 48
[22]  Yao L D, Wang P Y, Wang W L. Wide Heavy Plate, 2002; (2): 7
[23]  (姚连登, 王培玉, 王文亮. 宽厚板, 2002; (2): 7)
[24]  Suzuki S, Ichimiya K, Akita T. JFE Technol Rep, 2005; 5: 24
[25]  Nie Y, Dong W L, Zhao Y T, Shang C J, Hou H X, He X L. J Univ Sci Technol Beijing, 2006; 28: 8
[26]  (聂燚,董文龙, 赵运堂, 尚成嘉, 侯华兴, 贺信莱. 北京科技大学学报, 2006; 28: 8)
[27]  Shang C J, Yang S W, Wang X M, He X L, Liu Z Q, Chen Q P. J Univ Sci Technol Beijing, 2002; 24: 2
[28]  (尚成嘉, 杨善武, 王学敏, 贺信莱, 刘振清, 陈庆平. 北京科技大学学报, 2002; 24: 2)
[29]  (缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[30]  Guo Z, Lee C S, Morris JW. Acta Mater, 2004; 52: 5511
[31]  You Y, Shang C J, Chen L, Subramanian S. Mater Sci Eng, 2012; A546: 111
[32]  Xu Z Y. Phase Change Principle. Beijing: Science Press, 2000: 412
[33]  (徐祖耀. 相变原理. 北京: 科学出版社, 2000: 412)
[34]  Xu Z Y, Liu S K. Bainite Transformation and Bainite. Beijing: Science Press, 1991: 85
[35]  (徐祖耀, 刘世楷. 贝氏体相变与贝氏体. 北京: 科学出版社, 1991: 85)
[36]  Yu Y N. The Basis of Materials Science. Beijing: Higher Education Press, 2008: 34
[37]  (余永宁. 材料科学基础. 北京: 高等教育出版社, 2008: 34)
[38]  Xu Z Q. Martensitic Transformation and Martensite. Beijing: Science Press, 1980: 41
[39]  (徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 41)
[40]  Hiromoto K, Rintaro U, Nobuhiro T, Yoritoshi M. Acta Mater, 2006; 54: 1279
[41]  Pancholi V, Krishnan M, Samajdar I S, Yadav V, Ballal N B. Acta Mater, 2008; 56: 2037
[42]  Furuhara T, Takayama N, Miyamoto G. Mater Sci Forum, 2010; 638: 3044

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133