全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能

DOI: 10.3724/SP.J.1037.2012.00291, PP. 1422-1430

Keywords: 0Cr13铁素体不锈钢,等径转角挤压(ECAP),微观结构,拉伸性能,冲击韧性

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了固溶态0Cr13铁素体不锈钢经室温2道次等径转角挤压(ECAP)及退火处理后的微观结构和力学性能.光学显微镜和透射电镜观察表明,经ECAP挤压变形和650--750℃退火后,样品发生部分再结晶,内部残留约10%-35%(体积分数)均匀分布的岛状超细晶基体.统计表明,再结晶晶粒和超细晶晶粒尺寸呈双峰分布,平均晶粒尺寸分别为5.1---8.3μm和418---525nm.拉伸和冲击测试结果表明,优选的ECAP挤压变形+700℃退火处理工艺,能够使实验钢获得与常规使用态(锻后700℃退火)相当的冲击韧性(212J/cm2),以及比后者更高的屈服强度、均匀塑性和静力韧度(分别提高10%,35%和70%).组织细化和应变硬化能力的提高是造成挤压后退火样品综合力学性能提高的原因.

References

[1]  Fujita T. Translated by Ding W H, Zhang X J, Chen Y Z. Heat Treatment of Stainless Steels. Beijing: China Machine Press, 1983: 106(藤田辉夫著, 丁文华, 张绪江, 陈玉璋译. 不锈钢的热处理. 北京: 机械工业出版社, 1983: 106)
[2]  Lu S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77(陆世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)
[3]  Wen Y Q. Ultra-Fine Grained Steels-Microstructural Refinement Theory and Controlled Technology of Steels. Beijing: Metallurgical Industry Press, 2003: 7(翁宇庆. 超细晶钢-钢的组织细化理论与控制技术. 北京: 冶金工业出版社, 2003: 7)
[4]  Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1
[5]  Wen D C. Mater Trans, 2006; 47: 2779
[6]  Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881
[7]  Calcagnotto M, Ponge D, Raabe D. Mater Sci Eng, 2010; A527: 7832
[8]  Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[9]  Wu S D, An X H, Han W Z, Qu S, Zhang Z F. Acta Metall Sin, 2010; 46: 257(吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)
[10]  Yang G, Yang M X, Liu Z D, Wang C. J Iron Steel Res Inter, 2011; 18: 40
[11]  Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[12]  Wang Y M, Chen M W, Zhou F H, Ma E. Nature, 2002; 419: 912
[13]  Wang Y M, Ma E, Chen M W. Appl Phys Lett, 2001; 80:2395
[14]  Ma E. JOM, 2006; 58: 49
[15]  Yang G, Huang C X, Wang C, Zhang L Y, Hu C, Zhang Z F, Wu S D. Mater Sci Eng, 2009; A515: 199
[16]  Wang J T, Xu C, Du Z Z, Qu G Z, Langdon T G. Mater Sci Eng, 2005; A410: 312
[17]  Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164(杨沐鑫, 杨钢, 刘正东, 王昌, 胡超, 黄崇湘. 金属学报, 2012; 48: 164)
[18]  JIS G. Cold-Rolled Stainless Steel Plate and Steel Belt Technical Standards. Tokyo: JSA, 2005: 20
[19]  Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
[20]  William D, Callister Jr. Fundamentals of Materials Science and Engineering. 5th ed. New York: John Wiley &Sons Inc, 2001:185
[21]  Fang D R, Duan Q Q, Huang C X, Wu S D, Zhang Z F, Li J J, Zhao N Q. Acta Metall Sin, 2007; 43: 1251(房大然, 段启强, 黄崇湘, 吴世丁, 张哲峰, 李家俊, 赵乃勤. 金属学报, 2007; 43: 1251)
[22]  Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[23]  ASTM E 112-96. Standard Test Methods for Determining Average Grain Size. West Conshohocken: ASTM International, 2004: 10
[24]  Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643
[25]  Huang C X, Yang G, Wang C, Zhang Z F, Wu S D. Metall Mater Trans, 2011; 42 A: 2061
[26]  Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133