全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响

DOI: 10.3724/SP.J.1037.2012.00556, PP. 365-371

Keywords: 界面能各向异性,定向凝固,枝晶尖端半径,一次间距

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用基于界面追踪法的数值自洽模型研究了界面能各向异性对定向凝固枝晶生长的影响.模拟结果表明,对于给定的凝固条件,对应不同的一次间距Peclect数范围,存在2个不同的界面形态解区间,其中较小的间距Peclect数解区间对应的界面形态类似胞状晶,较大的间距Peclect数解区间对应的界面形态类似枝状晶,界面能各向异性的增大有利于枝晶解区间的扩大.同时,枝晶生长的尖端临界稳定性参数σ*与界面能各向异性参数E4存在幂指数关系,并基于Fisher枝晶扩散解,得到包含界面能各向异性参数的枝晶尖端半径表达式RIMS=2.5646[гDL/Vk0△T0]0.5E4-0.1905,△T0=mC0(k0-1)/k0;界面能各向异性增大,枝晶生长界面前沿过冷度减小.枝晶生长稳态一次间距的选择主要取决于枝晶间溶质扩散场的相互作用,而由于界面能各向异性在枝晶尖端作用的局域化,使得界面能各向异性对定向凝固稳态一次枝晶间距影响较小.

References

[1]  Somboonsuk K, Mason J T, Trivedi R.Metall Trans, 1984; 15A: 967
[2]  Burden M H, Hunt J D.J Cryst Growth, 1974; 22: 109
[3]  Karma A, Sarkissian A.Metall Mater Trans, 1996; 27A: 635
[4]  Hunziker O, Vandyoussefi M, Kurz W.Acta Mater, 1998; 46: 6325
[5]  Langer J S.Rev Mod Phys, 1980; 52: 1
[6]  Kessler D A, Koplik J, Levine H.Adv Phys, 1988; 37: 255
[7]  Kessler D A, Levine H.Phys Rev, 1986; 33B: 7867
[8]  Barbieri A, Hong D C, Langer J S.Phys Rev, 1987; 35A: 1802
[9]  Xu J J.Phys Rev, 1991; 43A: 930
[10]  Xu J J, Pan Z X.J Cryst Growth, 1993; 129: 666
[11]  Xu J J.Phys Rev, 1996; 53E: 5051
[12]  Kurz W, Fisher D J.Acta Metall, 1981; 29: 11
[13]  Hunt J D, McCartney D G.Acta Metall, 1987; 35: 89
[14]  Trivedi R.J Cryst Growth, 1980; 48: 93
[15]  Langer J S, Muller-Krumbhaar H.Acta Metall, 1978; 26: 1681
[16]  Muller-Krumbhaar H, Langer J S.Acta Metall, 1978; 26: 1697
[17]  Chalmers B.Principle of Solidification. New York: Wiley, 1964: 105
[18]  Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 40: 1042(单博伟, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 40: 1042)
[19]  Utter B, Bodenschatz E.Phys Rev, 2005; 72E: 011601
[20]  Li C X, San J C, Guo T M, Wang H, Wang F X.J Synthetic Cryst, 2005; 34: 870(李晨希, 伞晶超, 郭太明, 王宏, 王凤翔. 人工晶体学报, 2005; 34: 870)
[21]  Wang Z J.PhD Disertation, Northwestern Polytechnical University, Xi'an, 2009(王志军. 西北工业大学博士学位论文, 西安, 2009)
[22]  Lu S Z, Hunt J D.J Cryst Growth, 1992; 123: 17
[23]  Lin X, Li Y M, Liu Z X, Li T, Huang W D.Sci Technol Adv Mater, 2001; 2: 293
[24]  Patankar S V.Numerical Heat Transfer and Fluid Flow. London: Hemisphere Publishing Corp, 1970: 30
[25]  McCartney D G, Hunt J D.Metall Trans, 1984; 15A: 983
[26]  Lipton J, Glicksman M E, Kurz W.Metall Trans, 1987; 18A: 341
[27]  Warren J A, Langer J S.Phys Rev, 1993; 47E: 2702
[28]  Langer J S, Muller-Krumbhaar H.J Cryst Growth, 1977; 42: 11
[29]  Kurz W, Fisher D J.Acta Metall, 1981; 29: 11
[30]  Trivedi R.J Cryst Growth, 1980; 48: 93

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133