Introduction. The proprioceptive neuromuscular facilitation (PNF) is a physiotherapeutic concept based on muscle and joint proprioceptive stimulation. Among its principles, the irradiation is the reaction of the distinct regional muscle contractions to the position of the application of the motions. Objective. To investigate the presence of irradiated dorsiflexion and plantar flexion and the existing strength generated by them during application of PNF trunk motions. Methods. The study was conducted with 30 sedentary and female volunteers, the PNF motions of trunk flexion, and extension with the foot (right and left) positioned in a developed equipment coupled to the load cell, which measured the strength irradiated in Newton. Results. Most of the volunteers irradiated dorsal flexion in the performance of the flexion and plantar flexion during the extension motion, both presenting an average force of 8.942?N and 10.193?N, respectively. Conclusion. The distal irradiation in lower limbs became evident, reinforcing the therapeutic actions to the PNF indirect muscular activation. 1. Introduction Proprioceptive neuromuscular facilitation (PNF) is a concept of treatment [1] in which the basic philosophy considers that every human, including those with disabilities, has an untapped existing potential [2]. PNF is a method used in clinical practice [3] in order to improve development of neuromuscular system by stimulation of muscle and joint proprioceptors [4]. Some concepts characterize the philosophy under the technique: integrated approach (i.e., treatment is directed toward the human as a whole and not only as a body segment), based on an untapped existing potential (mobilizing reserves patients), positive approach (reinforcing patient’s ability on a physical and psychological level) whose goal is reaching the level of function from this patient through the International Classification of Functioning (ICF) model. Among the PNF’s principles, irradiation is a useful aspect for patients with muscle weakness in areas that cannot be directly worked (strengthened) [5]. This principle is based on fact that stimulation of strong and preserved muscle groups produces strong activation of injured and weak muscles, facilitating muscle contraction [6]. So, these weak muscles can develop an increase in the duration and/or intensity by the spread of the response to stimulation or by the synergistic muscle inhibition [7]. Some studies have investigated the presence of irradiation [3, 7–9], but type of muscle (agonist or antagonist) which receives irradiation is not
References
[1]
S. Susan, A. D. Beckers, and M. Buck, in FNP in Practice: An Illustrated Guide, M. V. Heidelberg, Ed., pp. 80–89, Springer, Berlin, Germany, 2003.
[2]
J. W. Youdas, D. B. Arend, J. M. Exstrom, T. J. Helmus, J. D. Rozeboom, and J. H. Hollman, “Comparison of muscle activation levels during arm abduction in the plane of the scapula vs.proprioceptive neuromuscular facilitation upper extremity patterns,” The Journal of Strength & Conditioning Research, vol. 26, no. 4, pp. 1058–1065, 2012.
[3]
P. C. Meningroni, C. S. Nakada, L. Hata, A. C. Fuzaro, W. M. Júnior, and J. E. Araujo, “Contralateral force irradiation for the activation of tibialis anterior muscle in carriers of Charcot-Marie-Tooth disease: effect of PNF intervention program,” Revista Brasileira de Fisioterapia, vol. 13, no. 5, pp. 438–443, 2009.
[4]
K. N. Sharma, Handbook of Proprioceptive Neuromuscular Facilitation: Basic Concepts and Techniques, Lambert, Saarbrücken, Germany, 2012.
[5]
P. M. S. Pink, “Contralateral effects of upper extremity proprioceptive neuromuscular facilitation patterns,” Physical Therapy, vol. 61, no. 8, pp. 1158–1162, 1981.
[6]
N. Kofotolis, I. S. Vrabas, E. Vamvakoudis, A. Papanikolaou, and K. Mandroukas, “Proprioceptive neuromuscular facilitation training induced alterations in muscle fibre type and cross sectional area,” British journal of sports medicine, vol. 39, no. 3, p. e11, 2005.
[7]
C. Sherrington, The Integrative Action of the Nervous System, Yale University Press, New Haven, UK, 1947.
[8]
F. A. Hellebrandt, S. J. Houtz, M. J. Partridge, and C. E. Walters, “Tonic neck reflexes in exercise of stress in man,” American Journal of Physical Medicine and Rehabilitation, vol. 35, pp. 144–159, 1956.
[9]
F. A. Hellebrandt and J. C. Waterland, “Indirect learning. The influence of unimanual exercise on related muscle groups of the same and the opposite side,” American Journal of Physical Medicine, vol. 41, pp. 45–55, 1962.
[10]
J. Loss, et al., “Recommended method for correlating muscle strength and electromyography,” Movement, vol. 8, no. 1, pp. 33–40, 1998.
[11]
L. Schettino, et al., “Comparative study on the strength and autonomy of sedentary versus active elderly women,” Revista Terapia Manual, vol. 5, no. 20, pp. 131–135, 2007.
[12]
M. Papoti, et al., “Standardization of a specific protocol for determining the anaerobic conditioning in swimmers using load cells,” Revista Portuguesa de Ciências do Desporto, vol. 3, no. 3, pp. 36–42, 2003.
[13]
M. Gon?alves and F. S. S. Barbosa, “Analysis of strength and resistance parameters of the lumbar spinae erector muscles during isometric exercise at different effort levels,” Revista Brasileira de Medicina do Esporte, vol. 11, no. 2, pp. 109–114, 2005.
[14]
J. M. Miller, J. A. A. Miller, D. Perruchini, and J. O. L. DeLancey, “Test-retest reliability of an instrumented speculum for measuring vaginal closure force,” Neurourology and Urodynamics, vol. 26, no. 6, pp. 858–863, 2007.
[15]
J. M. Jakicic, B. H. Marcus, K. I. Gallagher, M. Napolitano, and W. Lang, “Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial,” Journal of the American Medical Association, vol. 290, no. 10, pp. 1323–1330, 2003.
[16]
L. J. Elias, M. P. Bryden, and M. B. Bulman-Fleming, “Footedness is a better predictor than is handedness of emotional lateralization,” Neuropsychologia, vol. 36, no. 1, pp. 37–43, 1998.
[17]
Y. Okamoto, A. Kunimatsu, T. Kono, Y. Kujiraoka, J. Sonobe, and M. Minami, “Gender differences in MR muscle tractography,” Magnetic Resonance in Medical Sciences, vol. 9, no. 3, pp. 111–118, 2010.
[18]
A. D. Neumann, Kinesiology of the Musculoskeletal System, Elsevie, Rio de Janeiro, Brazil, 2011.
[19]
T. Myers, Anatomy Trains, Elsevier, Rio de Janeiro, Brazil, 2010.
[20]
A. Frigon and J. P. Gossard, “Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord,” Journal of Neuroscience, vol. 30, no. 20, pp. 7061–7071, 2010.
[21]
Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic muscle activation patterns account for muscle activity during human locomotion,” Journal of Physiology, vol. 556, no. 1, pp. 267–282, 2004.
[22]
G. Cappellini, Y. P. Ivanenko, N. Dominici, R. E. Poppele, and F. Lacquaniti, “Motor patterns during walking on a slippery walkway,” Journal of Neurophysiology, vol. 103, no. 2, pp. 746–760, 2010.
[23]
R. Cham and M. S. Redfern, “Changes in gait when anticipating slippery floors,” Gait and Posture, vol. 15, no. 2, pp. 159–171, 2002.
[24]
L. J. Elias, M. P. Bryden, and M. B. Bulman-Fleming, “Footedness is a better predictor than is handedness of emotional lateralization,” Neuropsychologia, vol. 36, no. 1, pp. 37–43, 1998.
[25]
B. D. McLean and M. D. Tumilty, “Left-right asymmetry in two types of soccer kick,” British Journal of Sports Medicine, vol. 27, no. 4, pp. 260–262, 1993.
[26]
C. Gabbard and S. Hart, “A Question of foot dominance,” Journal of General Psychology, vol. 123, no. 4, pp. 289–296, 1996.
[27]
F. H. Previc, “A general theory concerning the prenatal origins of cerebral lateralization in humans,” Psychological Review, vol. 98, no. 3, pp. 299–334, 1991.
[28]
X. Zhang, T. J. Dube, and K. A. Esser, “Working around the clock: circadian rhythms and skeletal muscle,” Journal of Applied Physiology, vol. 107, no. 5, pp. 1647–1654, 2009.
[29]
R. R. Almon, E. Yang, W. Lai et al., “Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 295, no. 4, pp. R1031–R1047, 2008.
[30]
G. Atkinson, H. Jones, and P. N. Ainslie, “Circadian variation in the circulatory responses to exercise: relevance to the morning peaks in strokes and cardiac events,” European Journal of Applied Physiology, vol. 108, no. 1, pp. 15–29, 2010.
[31]
V. M. Zatsiorsky, F. Gao, and M. L. Latash, “Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects,” Experimental Brain Research, vol. 162, no. 3, pp. 300–308, 2005.
[32]
V. Baltzopoulos and D. A. Brodie, “Isokinetic dynamometry. Applications and limitations,” Sports Medicine, vol. 8, no. 2, pp. 101–116, 1989.
[33]
H. Degens, R. M. Erskine, and C. I. Morse, “Disproportionate changes in skeletal muscle strength and size with resistance training and ageing,” Journal of Musculoskeletal Neuronal Interactions, vol. 9, no. 3, pp. 123–129, 2009.