全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Tb0.3Dy0.7Fe1.95-xTix(x=0,0.03,0.06,0.09)合金的微观组织与磁致伸缩性能

DOI: 10.3724/SP.J.1037.2011.00269, PP. 11-15

Keywords: Tb-Dy-Fe合金,磁致伸缩,Ti添加,显微组织,Laves相

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用高真空非自耗电弧炉制备了Tb0.3Dy0.7Fe1.95-xTix(x=0,0.03,0.06,0.09)合金,系统研究了不同Ti含量Tb0.3Dy0.7Fe1.95-xTix合金的晶体结构、微观组织、磁致伸缩性能及它们之间的关系.结果表明添加Ti后的Tb0.3Dy0.7Fe1.95-xTix合金基体相仍为MgCu$_{2}$型Laves相结构,Ti取代了Tb0.3Dy0.7Fe1.95合金中比其自身半径大的稀土原子Tb和Dy而使晶格常数减小.添加Ti后,初生相TiFe2的形成使得凝固液体中富含R(R=Tb,Dy)从而抑制了有害相RFe3的生成,Ti在基体相RFe2中和富$R$相中都可溶解,分别形成了(R,Ti)Fe2基体相和富(R,Ti)相.Ti的添加量对磁致伸缩性能的影响很大,当x=0.03时,Ti的添加使磁致伸缩性能较Tb0.3Dy0.7Fe1.95母合金提高幅度最大,但当x=0.09时,由于顺磁相TiFe2和富(R,Ti)相的析出对磁致伸缩性能不利,但相对于Tb0.3Dy0.7Fe1.95母合金也有少量提高.

References

[1]  Greenough R D, Shulze M P, Jenner A G I, Wilkinson A J. IEEE Trans Magn, 1991; 27: 5346
[2]  Clark A E. Ferromagnetic Materials. Vol.1 Amsterdam: North-Holland, 1980: 531
[3]  Clark A E, Abbundi R, Gilmor W R. IEEE Trans Magn, 1978; 14: 542
[4]  Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910
[5]  Branwood A, Janio A L, Pierey A R. J Appl Phys, 1987; 61: 3796
[6]  Teter J P, Clark A E, McMasters O D. J Appl Phys, 1987; 61: 3787
[7]  Jiles D C. Acta Mater, 2003; 51: 5907
[8]  Jiles D C. J Appl Phys, 1994; 27: 1
[9]  Zhang T L, Jiang C B, Zhang H, Xu H B. Smart Mater Struct, 2004; 13: 473
[10]  Zhang M C, Gao X X, Zhou S Z, Shi Z H. J Alloys Compd, 2004; 381: 226
[11]  Clark A E, Wun-Fogle M, Restorff J B, Lograsso T A, Cullen J R. IEEE Trans Magn, 2001; 37: 2678
[12]  Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276
[13]  Liu H Y, Li Y X, Meng F B. J Alloys Compd, 2006; 408: 133
[14]  Palit M, Pandian S, Balamuralikrishnan R, Singh A K, Das N, Chandrasekaran V, Markandeyulu G. J Appl Phys, 2006; 100: 074913
[15]  Clark A E, Teter J P, Wun-Fogle M. J Appl Phys, 1991; 69: 5771
[16]  Teter J P, Clark A E, Wun-Fogle M. IEEE Trans Magn, 1990; 26: 1748
[17]  Zhou S Z, Gao X X, Zhang M C, Zhao Q, Shi Z H. J Mater Sci Technol, 2000; 16: 175
[18]  Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloys Compd, 2003; 354: 263
[19]  Li K S, Xu J, Yang H C, Yuan Y Q, Yu D B, Ying Q M, Zhang S G. J Alloys Compd, 2004; 43: 8032
[20]  Wang B W, Wu C H, Chuang Y C, Jin X M, Li J Y. J Alloys Compd, 1996; 237: 58
[21]  Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925
[22]  Pandian S, Chandrasekaran V, Markandeyulu G, Iyer K J L, Rama Rao K V S. J Appl Phys, 2002; 92: 6082
[23]  Wang BW, Wu C H, Deng W, Tang S L, Jin X M, Chuang Y C, Li J Y. J Appl Phys, 1996; 79: 2587
[24]  Guo H Q, Yang H Y, Shen B G, Yang L Y, Li R Q. J Alloys Compd, 1990; 190: 255
[25]  Cui Y, Jiang C B, Xu H B. Acta Metall Sin, 2011; 47: 214
[26]  (崔 跃, 蒋成保, 徐惠彬. 金属学报, 2011; 47: 214)
[27]  Westwood P, Abell J S. J Appl Phys, 1990; 67: 998
[28]  Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548
[29]  Mei W, Okane T, Umeda T. J Alloys Compd, 1997; 248: 132

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133