OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
Tb0.3Dy0.7Fe1.95-xTix(x=0,0.03,0.06,0.09)合金的微观组织与磁致伸缩性能
DOI: 10.3724/SP.J.1037.2011.00269, PP. 11-15
Keywords: Tb-Dy-Fe合金,磁致伸缩,Ti添加,显微组织,Laves相
Abstract:
利用高真空非自耗电弧炉制备了Tb0.3Dy0.7Fe1.95-xTix(x=0,0.03,0.06,0.09)合金,系统研究了不同Ti含量Tb0.3Dy0.7Fe1.95-xTix合金的晶体结构、微观组织、磁致伸缩性能及它们之间的关系.结果表明添加Ti后的Tb0.3Dy0.7Fe1.95-xTix合金基体相仍为MgCu$_{2}$型Laves相结构,Ti取代了Tb0.3Dy0.7Fe1.95合金中比其自身半径大的稀土原子Tb和Dy而使晶格常数减小.添加Ti后,初生相TiFe2的形成使得凝固液体中富含R(R=Tb,Dy)从而抑制了有害相RFe3的生成,Ti在基体相RFe2中和富$R$相中都可溶解,分别形成了(R,Ti)Fe2基体相和富(R,Ti)相.Ti的添加量对磁致伸缩性能的影响很大,当x=0.03时,Ti的添加使磁致伸缩性能较Tb0.3Dy0.7Fe1.95母合金提高幅度最大,但当x=0.09时,由于顺磁相TiFe2和富(R,Ti)相的析出对磁致伸缩性能不利,但相对于Tb0.3Dy0.7Fe1.95母合金也有少量提高.
References
[1] | Greenough R D, Shulze M P, Jenner A G I, Wilkinson A J. IEEE Trans Magn, 1991; 27: 5346
|
[2] | Clark A E. Ferromagnetic Materials. Vol.1 Amsterdam: North-Holland, 1980: 531
|
[3] | Clark A E, Abbundi R, Gilmor W R. IEEE Trans Magn, 1978; 14: 542
|
[4] | Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910
|
[5] | Branwood A, Janio A L, Pierey A R. J Appl Phys, 1987; 61: 3796
|
[6] | Teter J P, Clark A E, McMasters O D. J Appl Phys, 1987; 61: 3787
|
[7] | Jiles D C. Acta Mater, 2003; 51: 5907
|
[8] | Jiles D C. J Appl Phys, 1994; 27: 1
|
[9] | Zhang T L, Jiang C B, Zhang H, Xu H B. Smart Mater Struct, 2004; 13: 473
|
[10] | Zhang M C, Gao X X, Zhou S Z, Shi Z H. J Alloys Compd, 2004; 381: 226
|
[11] | Clark A E, Wun-Fogle M, Restorff J B, Lograsso T A, Cullen J R. IEEE Trans Magn, 2001; 37: 2678
|
[12] | Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276
|
[13] | Liu H Y, Li Y X, Meng F B. J Alloys Compd, 2006; 408: 133
|
[14] | Palit M, Pandian S, Balamuralikrishnan R, Singh A K, Das N, Chandrasekaran V, Markandeyulu G. J Appl Phys, 2006; 100: 074913
|
[15] | Clark A E, Teter J P, Wun-Fogle M. J Appl Phys, 1991; 69: 5771
|
[16] | Teter J P, Clark A E, Wun-Fogle M. IEEE Trans Magn, 1990; 26: 1748
|
[17] | Zhou S Z, Gao X X, Zhang M C, Zhao Q, Shi Z H. J Mater Sci Technol, 2000; 16: 175
|
[18] | Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloys Compd, 2003; 354: 263
|
[19] | Li K S, Xu J, Yang H C, Yuan Y Q, Yu D B, Ying Q M, Zhang S G. J Alloys Compd, 2004; 43: 8032
|
[20] | Wang B W, Wu C H, Chuang Y C, Jin X M, Li J Y. J Alloys Compd, 1996; 237: 58
|
[21] | Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925
|
[22] | Pandian S, Chandrasekaran V, Markandeyulu G, Iyer K J L, Rama Rao K V S. J Appl Phys, 2002; 92: 6082
|
[23] | Wang BW, Wu C H, Deng W, Tang S L, Jin X M, Chuang Y C, Li J Y. J Appl Phys, 1996; 79: 2587
|
[24] | Guo H Q, Yang H Y, Shen B G, Yang L Y, Li R Q. J Alloys Compd, 1990; 190: 255
|
[25] | Cui Y, Jiang C B, Xu H B. Acta Metall Sin, 2011; 47: 214
|
[26] | (崔 跃, 蒋成保, 徐惠彬. 金属学报, 2011; 47: 214)
|
[27] | Westwood P, Abell J S. J Appl Phys, 1990; 67: 998
|
[28] | Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548
|
[29] | Mei W, Okane T, Umeda T. J Alloys Compd, 1997; 248: 132
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|