全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟

DOI: 10.3724/SP.J.1037.2011.00308, PP. 148-158

Keywords: 相场,Ti-6Al-4V,界面能各向异性,?α相片层,成分场

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用相场方法定量模拟了界面能各向异性对Ti-6Al-4V合金片层α相生长的影响.模拟所需的动力学与热力学数据分别来自DICTRA和Thermo-Calc数据库.结果表明,在高温热处理条件下,界面能各向异性是控制α相形貌的重要因素.温度越高α相沿长度方向生长越慢,片层的宽度和厚度越大.定量研究了新生α相和残余β相的宽度和厚度随模拟条件的变化,统计结果表明,对应于不同的界面能各向异性,α相的宽厚比演化规律不同,界面能各向异性越强,生成的α相越宽,残余β相宽度也越大.溶质场分析表明,生长过程中溶质分布不均匀,在相界β侧形成了Al贫瘠区和V富集区,且界面能各向异性越强,溶质场不均匀越明显.

References

[1]  Sastry S M L, Meschter P J, Oneal J E. Metall Mater Trans, 1984; 15A: 1451
[2]  Greenfie M A, Margolin H. Metall Trans, 1972; 3: 2649
[3]  Weiss I, Froes F H, Eylon D, Welsch G E. Metall Trans, 1986; 17A: 1935
[4]  Shell E, Semiatin S. Metall Mater Trans, 1999; 30A: 3219
[5]  Stefansson N, Semiatin S L, Eylon D. Metall Mater Trans, 2002; 33A: 3527
[6]  Stefansson N, Semiatin S L. Metall Mater Trans, 2003; 34A: 691
[7]  Yoder G R, Cooley L A, Crooker T W. Metall Mater Trans, 1977; 8A: 1737
[8]  Yoder G R, Cooley L A, Crooker T W. Eng Fract Mech, 1979; 11: 805
[9]  Lindigkeit J, Terlinde G, Gysler A, Lutjering G. Acta Metall, 1979; 27: 1717
[10]  Carter R D, Lee E W, Starke E A, Beevers C J. Metall Mater Trans, 1984; 15A: 555
[11]  Suresh S. Metall Mater Trans, 1985; 16A: 249
[12]  Hall I W, Hammond C. Mater Sci Eng, 1978; 32: 241
[13]  Ravichandran K S. Acta Metall Mater, 1991; 39: 401
[14]  Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O. Mech Mater, 2004; 36: 161
[15]  Ma Y J. PhD Thesis, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2009
[16]  (马英杰. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[17]  Liu J R. Post-doctoral Research Report, Institute of Metal Research, Chinese academy of sciences, Shenyang, 2011
[18]  (刘建荣.中国科学院金属研究所博士后出站报告, 沈阳, 2011)
[19]  Filip R, Kubiak K, ZiajaW, Sieniawski J. J Mater Process Technol, 2003; 133: 84
[20]  Li S K, Xiong B Q, Hui S X, Ye W J, Yu Y. Mater Sci Eng, 2007; A460: 140
[21]  Semiatin S L, Bieler T R. Acta Mater, 2001; 49: 3565
[22]  Ahmed T, Rack H J. Mater Sci Eng, 1998; A243: 206
[23]  Banerjee R, Bhattacharyya D, Collins P C, Viswanathan G B, Fraser H L. Acta Mater, 2004; 52: 377
[24]  Bhattacharyya D, Viswanathan G B, Fraser H L. Acta Mater, 2007; 55: 6765
[25]  Krahe P R, Aaronson H I, Kinsman K R. Acta Metall, 1972; 20: 1109
[26]  Zener C. Trans AIME, 1946; 167: 550
[27]  Kirkaldy J S. Scand J Metall, 1991; 20: 50
[28]  Loginova I, Agren J, Amberg G. Acta Mater, 2004; 52: 4055
[29]  Ma N. PhD Thesis, The Ohio State University, 2005
[30]  Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A. JOM, 2005; 57: 32
[31]  Ma N, Yang F, Shen C,Wang G, Viswanathan G B, Collins P C, Xu D S, Yang R, Fraser H L,Wang Y Z. In: NinomiM ed., Ti-2007 Science and Technology, Sendai: the Japan
[32]  Institute of Metals, 2007: 287
[33]  Aaronson H I, Furuhara T, Enomoto M. Scand J Metall, 1991; 20: 18
[34]  Mullins W W, Sekerka R F. J Appl Phys, 1963; 34: 323
[35]  Wang G, Xu D S, Yang R. Acta Phys Sin, 2009; 58(Spec): S343
[36]  (王刚, 徐东生, 杨锐. 物理学报, 2009; 58: S343)
[37]  Chen Q, Ma N, Wu K S, Wang Y Z. Scr Mater, 2004; 50: 471
[38]  Mills M J, Hou D H, Suri S, Viswanathan G B. In: Pond R C ed., Boundaries and Interfaces in Materials: The David A. Smith Symposium, Warrendale: Minerals, Metals
[39]  & Materials Soc, 1998: 295

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133