OALib Journal期刊
ISSN: 2333-9721
费用:99美元
用Marx法精确测量内耗和弹性模量时的计算公式
, PP. 726-734
Abstract:
考虑了组合振子法测量内耗(Q~(-1))和弹性模量时粘结层和支持导线的效应。求解了描述组合振子耦合振动的联立偏微分方程组,得出了试样内耗和弹性模量的精确表达式。粘结层附加内耗与粘结层中应变振幅平方及其内耗乘积成正比。支持导线附加内耗正比于细丝内耗和试样内耗乘积。粘结层一般减小振子共振频率。解释了小内耗试样测量中观察到的由粘结层流变和开裂所造成的非线性不稳定背景内耗现象,例如多重共振峰、呼吸现象等。提出了用Marx法准确测量的有效措施。
References
[1] 1 孙宗琦,金属学报,18(1982) ,293.
[2] 2 Marx, J., Rev. Sci. Instrum., 22(1951) , 503.
[3] 3 Beshers, D. N., Techniques of Metals Research, Vol. Ⅶ, Part 2, Ed. Bunshah, R. F., Wiley, New York, 1976, p. 618.
[4] 4 Cady, W. G., Piezoelectricity, McGraw-Hill, 1946, p. 88.
[5] 5 Minorsky, N., Nonlinear Oscillation, Van Nostrand, New York, 1969, p. 375.
[6] 6 Robinson, W. H.; Edgar, A., IEEE Trans. Sonics Ultrason., SU-21(1974) , 98.
[7] 7 Robinson, W. H.; Carpenter, S. H.; Tallon, J. L., J. Appl. Phys., 45(1974) , 1975.
[8] 8 Robinson, W. H., Philos. Mag., 25(1972) , 355.
[9] 9 Huber, R. J.; Baker, G. S.; Girrs, P., J. Appl. Phys., 32(1961) , 2488.
[10] 10 Baker, G. S.; Carpenter, S. H., Rev. Sci. Instrum., 36(1965) , 29.
[11] 11 Devine, S. D.; Robinson, W. H., J. Appl. Phys, 48(1977) , 1437.
[12] 12 Simpson, M.; Finlayson, T. R.; Smith, T. F., J. Phys. D11(1978) , 453.
[13] 13 Nowick, A. S.; Berry, B. S., Anelastic Relaxation in Crystalline Solids, Academic Press, 1972, p. 431.
[14] 14 Schwarz, R. B., Rev. Sci. Instrum., 48(1977) , 111.
[15] 15 Tatento, H.; Tanignchi, H., Jpn. J. Appl. Phys., 19(1980) , 175.
[16] 16 Wuttig, M.; Suzuki, T., Acta Metall., 27(1979) , 755.
[17] 17 Wuttig, M.; Suzuki, T., Scr. Metall., 14(1980) , 229.
[18] 18 Ritchie, I. G.; Atrens, A.; Blair, D. G., Internal Friction and Ultrasonic Attenuation in Solids, Ed. Hasiguti, R. R., Uni. Tokyo Press, 1977, p. 637.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133