OALib Journal期刊
ISSN: 2333-9721
费用:99美元
轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响
, PP. 1111-1116
Keywords: 管线钢 ,抗大变形 ,屈强比 ,弛豫 ,协调变形
Abstract:
利用SEM和TEM原位拉伸方法研究了轧后冷却制度对X80级抗大变形管线钢组织的影响及低屈强比的微观机理.结果表明采用轧后弛豫+控制冷却的工艺可以获得铁素体+贝氏体双相组织,弛豫终止温度是影响铁素体体积含量和晶粒大小的决定因素.当弛豫终止温度区间为690-705℃时,试样的强度和塑性达到了较好的匹配,满足X80级抗大变形管线钢的性能要求.弛豫终止温度越低,铁素体体积含量越高,晶粒尺寸越大,屈强比越低.对拉伸过程进行动态原位观察的结果表明,铁素体(软相)和贝氏体(硬相)的协调变形机制是屈强比降低的原因.
References
[1] Li H L, Li X, Ji L K. Weld Pipe Tube, 2007; 30(5): 6
[2] (李鹤林, 李霄, 吉玲康. 焊管, 2007; 30(5): 6)
[3] Mohr W. Strain-based Design of Pipelines. Washinton: EWI, 2003: 10
[4] Ishikawa N, Parks D M, Socrate S, Kurihara M. ISIJ Int, 2000; 40: 1170
[5] Shen X P, Lei T Q, Liu J Z. Acta Metall Sin, 1987; 23: 151
[6] (沈显璞, 雷廷权, 刘剑壮. 金属学报, 1987; 23: 151)
[7] Li L, Ding H, Wen J L, Song H M, Zhang P J. Chin J Mater Res, 2007; 21: 519
[8] (李龙, 丁桦, 温景林, 宋红梅, 张丕军. 材料研究学报, 2007; 21: 519)
[9] Han B Q, Su Y. J Mater Proc Technol, 2003; 136: 102
[10] Tomotam Y, Umemoto I, Komatsubara O, Hiramatsu A, Nakajima N. ISIJ Int, 1992; 32: 343
[11] Endo S, Kurihara M, Suzuki N. Mater Jpn, 2000; 39: 167
[12] Ishikawa N, Endo S, Kondo J. JFE Technol Report, 2006; 7: 20
[13] KIM Y M, KIM S K, LIM Y J. ISIJ Int, 2002; 42: 1574
[14] Shikana N, Kagawa H, Kuriha M. ISIJ Int, 1992; 32: 337
[15] Huper T, Endo S, Ishikawa N. ISIJ Int, 1999; 39: 288
[16] Yu Q B, Zhao X P, Sun B. Iron Steel, 2007; 42: 76
[17] (于庆波, 赵贤平, 孙 斌. 钢铁, 2007; 42: 76)
[18] Ma M T, Wu B R. Dual Phase Steel-Physics and Mechanical Metallurgy, Beijing: Metallurgical Industry Press, 1988: 72
[19] (马鸣图, 吴宝榕. 双相钢-物理和力学冶金. 北京: 冶金工业出版社, 1988: 72)
[20] Li S X, Cui G R. J App Phy, 2007; 101: 083525-1
[21] Tang Z H, Waldo S. Mater Sci Eng, 2008; A408: 402
[22] Li H L, Guo S W, Feng Y R, Huo C Y, Chai H F. Microstructure Analysis and Metallograph Identification of High-strength Microalloying Pipelines Steel. Beijing: Petroleum Industry Press, 2001: 8
[23] (李鹤林, 郭生武, 冯耀荣, 霍春勇, 柴惠芬. 高强度微合金管线钢显微组织分析与鉴别图谱. 北京: 石油工业出版社, 2001: 8)
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133