全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2009 

α2-Ti-25Al-xNb合金力学性质的第一原理计算

, PP. 1049-1056

Keywords: α2-Ti3Al,Nb合金化,力学性质,第一原理计算-Ti3Al,Nb合金化,力学性质,第一原理计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用第一原理赝势平面波方法计算了D019结构的α2-Ti-25Al-xNb(x=0-12,原子分数,%)晶体的弹性模量(B,G和E)和抗拉强度(σb),并利用Cauchy压力(c12-c44)与G/B比值表征和评判了不同浓度Nb合金化时α2-Ti-25Al-xNb合金的韧脆化倾向.结果表明在x=2-12时,α2-Ti-25Al-xNb晶体的抗拉强度(σb)与α2相合金的弹性模量(B,E和G)随$x$增加而增大;在x=0-6时,α2-Ti-25Al-xNb合金脆性有一定改善,且x值越大韧化效果越好;但在x=7-9时,相对于α2-Ti3Al,合金脆性不但没有得到弱化,反而随x增加而加剧;随后,当x进一步增大时,合金脆性又随x增加再次得到改善,至x=12时,α2-Ti-25Al-xNb合金的韧化效果最好.通过电子态密度(DOS)和投影电子态密度(PDOS)等电子结构的分析,初步解释了Nb的这种强化与韧化作用.

References

[1]  Ward C H, Williams J C, Thompson A W. Scr Metall Mater, 1993; 28: 1017
[2]  Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley-VCH, 2003: 54
[3]  Zou J, Fu C L, Yoo M H. Intermetallics, 1995; 3: 265
[4]  Ravi C, MathiJaya S, Valsakumar M C, Asokamani R. Phys Rev, 2002; 65B: 155118
[5]  Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[6]  Kestner-Weykamp H T, Ward C H, Broderick T F, Kaufman M J. Scr Metall, 1989; 23: 1697
[7]  Hu Q M, Yang R, Xu D S, Hao Y L, Li D,Wu W T. Phys Rev, 2003; 68B: 054102
[8]  Kamat S V, Gogia A K, Banerjee D. Acta Mater, 1997; 46: 239
[9]  Kim Y W, Froes F H. In: Whang S H, Liu C T, Pope D P, Stiegler J O, eds., High-Temperature Aluminides and Intermetallics. Warrendale: TMS, 1990: 465
[10]  Paradkar A, Kamat S V, Gogia A K, Kashyap B P. Mater Sci Eng, 2008; A491: 390
[11]  Cao J X, Bai F, Li Z X. Mater Sci Eng, 2006; A424: 47
[12]  Gogia A K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M. Intermetallics, 1998; 6: 741
[13]  Xu D S, Song Y, Li D, Hu Z Q. Mater Sci Eng, 1997; A234: 230
[14]  Hao Y L, Xu D S, Cui Y Y, Yang R, Li D. Acta Mater, 1999; 47: 1129
[15]  Song Y. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1997
[16]  (宋岩. 中国科学院金属研究所博士学位论文, 沈阳, 1997)
[17]  Music D, Schneider J M. Phys Rev, 2006; 74B: 174110
[18]  Liu Y L, Liu L M, Wang S Q, Ye H Q. Intermetallics, 2007; 15: 428
[19]  Segall M D, Lindan P J D, ProbertMJ, Pickard C J, Hasnip P J, Clark S J, Paynel M C. J Phys Condens Mater, 2002; 14: 2717
[20]  Vanderbilt D. Phys Rev, 1990; 41B: 7892
[21]  Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[22]  Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[23]  Tanaka K, Okamoto K, Inui H, Minonishi Y, Yamaguchi M, Koiwa M. Philos Mag, 1996; 73A: 1475
[24]  Fu C L, Zou J, Yoo M H. Scr Metall Mater, 1995; 33: 885
[25]  Ramer N J, Rappe A M. Phys Rev, 2000; 62B: 743
[26]  Souvatzia P, Katsnelson M I, Simak S, Ahuja R, Eriksson O, Mohn P. Phys Rev, 2004; 70B: 012201
[27]  Hu Q K, Wu Q H, Ma Y M, Zhang L J, Liu Z Y, He J L, Sun H, Wang H T. Phys Rev, 2006; 73B: 214116
[28]  Past W, Gregorova E. Ceram Silik, 2004; 48: 14
[29]  Bercegeay C, Bernard S. Phys Rev, 2005; 72B: 214101
[30]  Pugh S F. Philos Mag, 1954; 45: 823
[31]  Pettifor D G. Mater Sci Technol, 1992; 8: 345
[32]  Lu G H, Deng S H, Wang T M, Kohyama M, Yamamoto P. Phys Rev, 2004; 69B: 134106
[33]  Luo W D, Roundy D, Cohen M L. Phys Rev, 2002; 66B: 94110
[34]  Nielsen O H. Phys Rev, 1985; 32B: 3780
[35]  Jahn′atek M, Krajc′? M, Hafner J. Phys Rev, 2005; 71B: 024101
[36]  Kishida K, Yoshikawa J, Inui H, Yamaguchi M. Acta Mater, 1999; 47: 3405

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133