全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2001 

不锈钢焊缝金属的氢脆

, PP. 985-990

Keywords: 氢脆,不锈钢焊缝金属,氢致马氏体

Full-Text   Cite this paper   Add to My Lib

Abstract:

用慢应变速率拉伸方法研究了不稳定型奥氏体不锈钢焊缝金属(308L和347L)以及母材(304L)的氢脆敏感性,分别研究了原子氢以及氢致马氏体对氢致塑性损失的贡献.结果表明,当可扩散的氢浓度C0大于临界值(约25×10-630×10-6)后三种不锈钢均会出现氢致马氏体(ε+α'),其含量M随C0升高而升高,即M(ε+α′)=54.2-25exp(-C0/153).氢致马氏体引起的塑性损失Iδ(M)随马氏体含量线性升高,即Iδ(M)=0.45M=24.4-11.3exp(-C0/153).100%马氏体引起的最大塑性损失约为45%.动态充氢引起的塑性损失Iδ减去充氢除气试样的塑性损失就是原子氢引起的塑性损失Iδ(H),它随C0升高而升高,但当C0>10-4后,Iδ(H)趋于最大值(对应ε=5×10-6/s),即Iδ(H)max=44%(308L),Iδ(H)max=45%(347L)以及Iδ(H)max=40%(304L).随应变速率ε升高,Iδ(H)逐渐下降,直至为零(对应ε=0.018/s-0.032/s),即Iδ(H)=-16.4-10.6lgε(308L),Iδ(H)=-20.9-12.1lgε(347L),Iε(H)=-21.9-9.9lgε(304L).

References

[1]  Iwadate T, Watanabe J, Tanaka Y. J press uessel Tech,1985; 8: 230
[2]  Louthan M R, Caskey G R, Donovan J A, Rawl D E.Mater Sci Eng, 1972; 10: 357
[3]  Holzworth M L, Louthan M R. Corrosion, 1968; 24:110
[4]  Perng T P, Altstetter C J. Metall Trans, 1988; 19A: 145:651
[5]  Chu W Y, Wang H L, Hsiao C M. Corrosion, 1984, 40:487
[6]  Nakayama T, Takano M. Corrosion, 1980, 36: 47
[7]  Odegard B C. In: Thompson A W, Bernstein I M eds. Ef-fect of Hydrogen on Behavior of Materials, AIME, War-rendale PA, 1976: 116
[8]  Brooks J A, West A J. Metall Trans, 1981; 12A: 213
[9]  Chu W Y, Yao J, Hsiao C M. Metall Trans, 1980; 15A:729
[10]  Qiao L J, Chu W Y, Hsiao C M. Cormsion, 1987; 43: 479
[11]  Qiao L J, Chu W Y, Hsiao C M. Cormsion, 1988; 44: 50
[12]  Huang T H, Altstetter C J. Metall Trans, 1991, 22A: 2605
[13]  Yu G H, Cheng Y H, Qiao L J, Wang Y B, Chu W Y.Corrosion, 1997; 53: 762
[14]  Zhang T Y, Chu W Y, Hsiao C M. Metall Trans, 1985;16A: 1649
[15]  Leeuwen H P. Eng Frac Mech, 1974; 6: 141
[16]  Li J C M. Metall Trans, 1978; 9A. 1353

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133