全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2005 

Cu-13.5%Sn合金雾化液滴凝固过程模拟

, PP. 923-928

Keywords: Cu-13.5%Sn合金,喷射成形,群体动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

在群体动力学的基础上,提出了描述Cu-13.5%Sn(质量分数)合金雾化液滴凝固过程的动力学模型;并将其与液滴的传热方程和运动方程相耦合,对雾化液滴的冷却凝固过程进行了模拟分析,探讨了液滴尺寸、气体初始速度、熔体过热度和初生相与异质形核基底间润湿角对液滴凝固行为的影响.模拟结果表明本模型能够很好地描述雾化液滴的凝固过程;液滴冷却至一定温度开始形核,随后晶粒长大;液滴直径越小,冷却速度越快,液滴内晶粒数量密度就越高,凝固结束时晶粒亦越细小.形核润湿角和熔体过热度的增加,导致液滴内晶粒数量密度降低,晶粒半径增大;而气体初始速度的增加,有利于液滴内晶粒细化.

References

[1]  Singer A R E. Mater Sci Eng, 1991; A135: 246
[2]  Grant P S. Prog Mater Sci, 1995; 39: 497
[3]  Fan H B, Cao F Y, Cui C S, Jiang Z L, Li Q C. Chin J Nonferrous Met, 1998; 8: 431 (范洪波,曹福洋,崔成松,蒋祖龄,李庆春.中国有色金属学 报,1998;8:431)
[4]  Zhang J S, Liu X J, Cui H, Duan X J, Sun Z Q, Chen G L. Metall Mater Trans, 1997; 28A: 1261
[5]  Yang L, Chen L J, Liu Z, Zhao J Z, Zhang Y C, Ye H Q. J Mater Sci Lett, 2003; 22: 45
[6]  Xiong B Q, Zhang Y A, Lin Y J, Zhang S M, Shi L K. Trans Nonferrous Met Soc Chin, 1999; 9: 302
[7]  Liu Y, Guo S, Liu Z M, Du Y, Huang B Y, Huang J S, Chen S Q, Liu F X. Z Metallkd, 2005; 96: 83
[8]  Kim H J, Lee J K, Shin S Y, Jeong H G, Kim D H, Bae J C. Intermatallics, 2004; 12: 1109
[9]  Zambon A, Bedpan B. Mater Sci Eng, 2004; A375: 638
[10]  Kiminami C S, Basim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. Adv Powder Technol Ⅱ: Key Eng Mater, 2001; 189(1): 503
[11]  Afonso C R M, Bolfarini C, Kiminami C S, Bassim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. J Non-Cryst Solids, 2001; 284: 134
[12]  Golumbfskie W J, Amateau M F, Eden T J, Wang J G, Liu Z K. Acta Mater, 2003; 51: 5199
[13]  Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2004; 40: 873 (刘东明,赵九洲,叶恒强.金属学报,2004;40:873)
[14]  Grant P S, Cantor B, Katgerman L. Acta Metall Mater, 1993; 41: 3097
[15]  Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2003; 39: 375 (刘东明,赵九洲,叶恒强.金属学报, 2003;39:375)
[16]  Xu Q, Lavernia E J. Acta Mater, 2001; 49: 3849
[17]  Cantor B, Baik K H, Grant P S. Prog Mater Sci,1997; 42: 373
[18]  Mathur P, Apelian D, Lawley A. Acta Metall, 1989; 37: 429
[19]  Seok H K, Lee H C, Oh K H, Lee J C, Lee H I, Ra H Y. Mater Trans, 2000; 31A: 1479
[20]  Fu X W, Zhang J S, Sun Z Q. Acta Metall Sin, 1999; 35: 147 (傅晓伟,张济山,孙祖庆.金属学报, 1999;35:147)
[21]  Cai W D, Lavernia E J. Metall Mater Trans, 1998; 29B: 1085
[22]  Liu D M, Zhao J Z, Ye H Q. Mater Sci Eng, 2004; A372: 229
[23]  Zhao J Z, Drees S, Ratke L. Mater Sci Eng, 2000; A282: 262
[24]  Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 123
[25]  Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. New York: Van Nostrand Reinhold ComDanv, 1981: 193
[26]  Liu B C, Jing T. Numerical Simulation and Quality Control for Casting Engineering. Beijing: China Machine Press, 2001: 167 (柳百成,荆 涛.铸造工程的模拟仿真与质量控制.北京:机 械工业出版社,2001:167)
[27]  Ranz W E, Marshall W R. Chem Eng Prog, 1952; 48: 141, 173
[28]  Lu Q Q, Fontain J R, Aubertin G. Int J Heat Mass Transfer, 1993; 36: 79
[29]  Clif R, Grace J R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978: 111
[30]  Tiedje N, Hansen P N, Pedersen A S. Metall Mater Trans, 1996; 27A: 4085
[31]  Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980: 59
[32]  Massalski T B. Binary Alloy Phase Diagrams. 2nd ed., Materials Park, Ohio: ASM International, 1990: 14

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133