全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2010 

轴对称磁场对电弧离子镀弧斑运动的影响

DOI: DOI:10.3724/SP.J.1037.2009.00556, PP. 372-379

Keywords: 电弧离子镀,轴对称磁场,有限元分析,弧斑运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了轴对称磁场对电弧离子镀弧斑运动的影响规律,利用有限元分析软件FEMM对轴对称磁场的分布进行了模拟,采用SHT-V型磁场测试仪测试了磁场强度,分析了靶面不同磁场分量的分布规律.从电弧斑点放电的物理机制出发,探讨了不同磁场分量和轴对称磁场对电弧离子镀弧斑运动的影响机制.结果表明,轴对称磁场通过影响空间正电荷密度n+的分布而作用于弧斑运动;随着轴对称磁场横向分量的增加,电弧斑点由随机运动逐渐转变为向靶面边缘扩展的旋转运动,弧斑运动速度加快,电弧电压升高,电流下降;当横向分量增加到临界强度(BT≈30Gs)时,弧斑在靶材边缘稳定的快速旋转运动并在靶沿处上下抖动,弧斑分裂,靶面中心处每隔0.5s左右出现多个细的圆斑线,然后很快向外扩展消失;靶材边缘出现明显的刻蚀轨道.

References

[1]  Kimblin C W. J Appl Phys, 1974; 45: 5235
[2]  Sanders D M, Boercker D B, Falabella S. IEEE Trans Plasma Sci, 1990; 18: 883
[3]  Vyskocil J, Musil J. Surf Coat Technol, 1990; 43: 299
[4]  Boxman R L, Goldsmith S, Greenwood A. IEEE Trans Plasma Sci, 1997; 25: 1174
[5]  Brown I G. Annu Rev Mater Sci, 1998; 28: 243
[6]  Boxman R L. IEEE Trans Plasma Sci, 2001; 29: 762
[7]  Boxman R L, Zhitomirsky V N. Rev Sci Instrum, 2006; 77: 6748
[8]  Boxman R L, Martin P J, Sanders D M. Handbook of Vacuum Arc Science and Technology, Chap 1, New Jersey: Noyes Publications, 1995: 3
[9]  Anders A. Cathodic Arcs: From Fractal Spots to Energetic Condensation, Chap 3, Berkeley: Springer, 2008: 75
[10]  Juttner B. J Phys, 2001; 34D: 103
[11]  Siemroth P, Zimmer O, Schulke T, Vetter J. Surf Coat Technol, 1997; 94: 592
[12]  Takikawa H, Tanoue H. IEEE Trans Plasma Sci, 2007; 35: 992
[13]  Anders S, Anders A, Yu K M, Brown I G. IEEE Trans Plasma Sci, 1993; 21: 440
[14]  Tanberg R. Nature, 1929; 124: 371
[15]  Juttner B. J Phys, 1995; 28D: 516
[16]  Beilis I I. IEEE Trans Plasma Sci, 2001; 29: 657
[17]  Drouet M G. IEEE Trans Plasma Sci, 1985; 13: 235
[18]  Juttner B, Kleberg I. J Phys, 2000; 33D: 2025
[19]  Harris L P. IEEE Trans Plasma Sci, 1983; 11: 94
[20]  Beilis I I. IEEE Trans Plasma Sci, 2002; 30: 2124
[21]  Hantzsche E. IEEE Trans Plasma Sci, 2003; 31: 799
[22]  Anders A. Thin Solid Films, 2006; 502: 22
[23]  Anders A. Vacuum, 2002; 67: 673
[24]  Siemroth P, Schultrich B, Sch¨ulke T. Surf Coat Technol, 1995; 74: 92
[25]  Anders A. IEEE Trans Plasma Sci, 2005; 33: 1456
[26]  Ramalingam S, Qi C B, Kim K. US Pat 4673477, 1987
[27]  Boxman R L, Beilis I I. IEEE Trans Plasma Sci, 2005; 33: 1618
[28]  Meeker D. http://femm.foster–miller.net
[29]  Yushkov G Y, Anders A, Oks E M, Brown I G. J Appl Phys, 2000; 88: 5618
[30]  L¨u Q G, Ren Z X, Liang R Q. Vac Cryog, 1999; 5: 202
[31]  Daalder D E. J Phys, 1986; 16D: 17
[32]  Lafferty J M. Vacuum Arcs—Theory and Applications. New York: John Wiley & Sons Inc, 1980: 249
[33]  Anders A, Anders S, J¨uttner B, B¨otticher W, L¨uck H, Schr¨oder G. IEEE Trans Plasma Sci, 1992; 20: 466
[34]  Shmelev D L, Litvnov E A. IEEE Trans Dielect Electr Insulation, 1999; 6: 441
[35]  Fang D Y. J Phys, 1982; 15D: 833
[36]  John R M, Winans J G. Phys Rev, 1954; 94: 1097
[37]  Robson A E. Proc 4th Int Conf on Phenomena in Ionized Gas. Uppsala, 1959; 1: 340
[38]  Coll B F, Sanders D M. Surf Coat Technol, 1996; 81: 42

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133