全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

相场法模拟弹性应变能对Ti-Al-Nb合金α2→O相变粗化动力学的影响

DOI: 10.3724/SP.J.1037.2011.00704, PP. 485-491

Keywords: 弹性应变能,Ti-Al-Nb合金,α2→,O相变,粗化动力学,相场法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用相场方法模拟了Ti-Al-Nb合金α2→O相转变,探讨了有无外力场作用下弹性应变能对O相颗粒形貌、取向、数目、体积分数及平均尺寸的影响.结果表明在弹性应变能作用下,颗粒形貌为长方块状,且沿弹性软方向分布;无外力场时,弹性应变能越大,沉淀相越易形核,稳定时颗粒数目越多,体积分数及平均尺寸越小;在外力场作用下,取向有利的变体优先长大,取向不利的变体长大受到抑制;在较小压应力作用下,沉淀相易于形核,稳定时颗粒数目增多,体积分数减小;在拉应力或较大压应力作用下,应力越大,越难于形核,稳定时颗粒数目越少,体积分数越大.

References

[1]  (彭超群, 黄伯云, 贺跃辉. 中国有色金属学报. 2001; 11: 527)
[2]  Xiao G, Huang B Y, Qu X H, He Y H, Zhou K Z. Rare Met, 1996; 20: 50
[3]  (肖刚, 黄伯云, 曲选辉, 贺跃辉, 周科朝. 稀有金属, 1996; 20: 50)
[4]  Brady M P, Brindley W J, Smialek J L. JOM, 1996; 48: 46
[5]  (隗功益, 孙丽. 材料导报, 2008; 22: 339)
[6]  Maki K, Shioda M, Sayashi M, Shimizu T, Isobe S. Mater Sci Eng,1992; A153: 591
[7]  Haanappel V A C, Clemens H, Stroosnijder M F. Intermetallics,2002; 10: 293
[8]  Zhang W J, Chen G L, Sun Z Q. Scr Metall Mater, 1993; 28: 563
[9]  Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V. Structural Intermetallics. Warrendale: Metallurgical Society of AIME, 1993: 19
[10]  Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 54
[11]  Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[12]  Bendersky L A, Roytburd A, Boettinger W J. J Res Natl Inst Stand Technol, 1993; 98: 561
[13]  Bendersky L A, Boettinger W J. J Res Natl Inst Stand Technol, 1993; 98: 585
[14]  Bendersky L A, Boettinger W J. Acta Metall Mater, 1994; 42: 2337
[15]  Muraleedharan K, Banerjee D. Scr Metall Mater, 1993; 29: 527
[16]  Muraleedharan K, Banerjee D. Philos Mag, 1995; 71A: 1011
[17]  Muraleedharan K, Nandy T K, Banerjee D, Lele S. Intermetallics, 1995; 3: 187
[18]  Pierron X, De Graef M, Thompson A W. Phil Mag, 1998; 77A: 1399
[19]  Gogia A K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M. Intermetallics, 1998; 6: 741
[20]  Wen Y H, Wang Y, Bendersky L A, Chen L Q. Acta Mater, 2000; 48: 4125
[21]  Wen Y H, Wang Y, Chen L Q. Acta Mater, 2001; 49: 13
[22]  Chen L Q, Shen J. Comput Phys Commun, 1998; 10: 147
[23]  Zhu J Z, Chen L Q. Phys Rev, 1999; 60E: 3565
[24]  Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D. Structural Intermetallics. Beijing: National Defence Industrial Press, 2001: 705
[25]  (张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国防工业出版社, 2001: 705)
[26]  Li C G, Fu H Z, Yu Q. Aerospace Materials. Beijing: National Defence Industrial Press, 2002: 100
[27]  (李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 100)
[28]  Lin D L. J Shanghai Jiao Tong Univ, 1998; 32: 95
[29]  (林栋梁. 上海交通大学学报, 1998; 32: 95)
[30]  Heng Q Y. Mater Sci Eng, 1999; A263: 289
[31]  Peng C Q, Huang B Y, He Y H. Chin J Nonferrous Met, 2001; 11: 527
[32]  Kui G Y, Sun L. Mater Rev, 2008; 22: 339

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133