OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响
DOI: 10.3724/SP.J.1037.2011.00633, PP. 441-449
Keywords: Nb-Ti微合金钢,超快冷,冷却路径,组织和性能,沉淀强化,细晶强化,加工硬化指数
Abstract:
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425MPa,抗拉强度高达500MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2-7nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30MPa,强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关,随着晶粒平均尺寸的增加使加工硬化指数增加.
References
[1] | (方淑芳, 张健. 金属学报, 1990; 26: A228)
|
[2] | Tang G Y, Zheng Y Z, Cai Q G, Zhu J. Acta Metall Sin,1989; 25: A414
|
[3] | (唐国翌, 郑炀曾, 蔡其巩, 朱静. 金属学报, 1989; 25: A414)
|
[4] | Zrnika J, Kvackaj T, Pongpaybul A, Sricharoenchai P, Vilk J,Vrchovinsky V. Mater Sci Eng, 2001; A319: 321
|
[5] | Xue X H, Shan Y Y, Zheng L, Lou S N. Mater Sci Eng,2006; A438: 285
|
[6] | Mesplont C. Proc 1th International Conf on Super-High Strength Steels, Rome, Italy: AIM, 2005 (CD-ROM)
|
[7] | Jiao D T, Cai Q W, Wu H B. Acta Metall Sin, 2009; 45: 1111
|
[8] | (焦多田, 蔡庆伍, 武会斌. 金属学报, 2009; 45: 1111)
|
[9] | Wu J B, Liu G Q, Wang H. Acta Metall Sin, 2010; 46: 838
|
[10] | (吴晋彬, 刘国权, 王浩. 金属学报, 2010, 46: 838)
|
[11] | Fu L M, Shan A D, Wang W. Acta Metall Sin, 2010; 46: 832
|
[12] | (付立铭, 单爱党, 王巍. 金属学报, 2010, 46: 832)
|
[13] | Bai D Q, Yue S, Sun W P, Jonas J J. Metall Trans, 1993; 24A: 2151
|
[14] | Maruyama N, Uemori R, Sugiyama M. Mater Sci Eng, 1998; A250: 2
|
[15] | Koch C C, Morris D G, Lu K, Inoue A. MRS Bull, 1999; 24: 54
|
[16] | Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
|
[17] | Song R, Ponge D, Raabe D. Acta Mater, 2003; 53: 4881
|
[18] | Cao J C. PhD Thesis, Kunming University of Science and Technology, 2006
|
[19] | (曹建春. 昆明理工大学博士学位论文, 2006)
|
[20] | Wang Z D, Qu J B, Liu X H, Wang G D. Acta Metall Sin, 2000; 36: 618
|
[21] | (王昭东, 曲锦波, 刘相华, 王国栋. 金属学报, 2000, 36: 618)
|
[22] | Akben M G, Bacroix B, Jonas J J. Acta Metall, 1983; 31: 161
|
[23] | Altuna M A, Lza-Mendia A, Gutierrez I. 3rd International Conf on Thermomechanical Proc Steels, Padova, Italy: Milano: AIM, 2008 (CD-ROM)
|
[24] | Davenport A, Honeycombe R. Proc Roy Soc London, 1971; 322: 191
|
[25] | Lagneborg R, Zajac S. Metall Mater Trans, 2001; 32A: 39
|
[26] | Andrews K W. Iron Steel Inst, 1965; 203: 721
|
[27] | Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 15
|
[28] | (雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 15)
|
[29] | Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251
|
[30] | (段修刚, 蔡庆伍, 武会斌. 金属学报, 2011; 47: 251)
|
[31] | Fang S F, Zhang J. Acta Metall Sin, 1990; 26: A228
|
[32] | Arribas M, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng,2008; A485: 383
|
[33] | Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
|
[34] | Liu W J, Jonas J J. Metall Trans, 1989; 20A: 689
|
[35] | Abad R, Fernandez A I, Lopez B, Podriguez-Ibabe J M. ISIJ Int,2001; 41: 1373
|
[36] | Yu Q B, Wang Z D, Liu X H, Wang G D. Mater Sci Eng, 2004; A379: 384
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|