全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2009 

细晶Ti--2Al--2.5Zr合金室温/低温低周疲劳行为及微观结构

, PP. 434-441

Keywords: Ti--2Al--2.5Zr,细晶,低周疲劳,位错,孪晶

Full-Text   Cite this paper   Add to My Lib

Abstract:

对细晶Ti--2Al--2.5Zr合金进行了室温/低温(77K)疲劳实验及微观组织观察.结果表明室温低应变幅Δεt/2(=0.5%,1.0%)下,合金表现为循环软化;室温高应变幅(1.5%,2.0%)下,则表现为循环应力饱和;77K时,不同应变幅下均表现为循环硬化,且随应变幅升高,循环硬化程度增强.疲劳寿命测试结果表明低温疲劳寿命始终高于室温.断口SEM观察表明,室温和低温下,疲劳裂纹扩展区均有明显的疲劳条纹,疲劳裂纹以穿晶方式扩展,室温下伴随有大量二次裂纹,低温下的二次裂纹数量明显减少.TEM观察表明低温下孪生是合金主要的变形方式,包括{1011}和{1121}型孪晶.疲劳变形位错组态为室温较低应变幅(0.5%,1.0%)下,形成位错线和局部位错缠结;室温下应变幅提高到1.5%和2.0%时,\{1010}柱面和{1121}锥面滑移同时开动,位错组态演化为亚晶和明显的位错胞.77K下,应变幅2.0%时形成沿柱面平行分布的位错带;77K下应变幅升高到4.5%时,多滑移形成相互垂直的位错线.低温诱发形变孪晶是Ti--2Al--2.5Zr低温疲劳寿命升高的原因.

References

[1]  (于振涛, 周 廉, 邓 炬, 顾海澄. 稀有金属材料与工程, 1999; 28: 340)
[2]  Yu Z T. Nonferrous Smelting, 2002; 31(6): 182
[3]  (于振涛. 有色冶炼, 2006; 31(6): 182)
[4]  Yu Z T, Zhou L, Deng J, Gu H C. Rare Met Mater Eng, 2000; 29: 86
[5]  (于振涛, 周 廉, 邓炬, 顾海澄. 稀有金属材料与工程, 2000; 29: 86)
[6]  Venables J A. In: Reed-Hill R E, Hirth J P, Rogers H C, eds. Deformation Twinning. New York: Gordon and Breach, 1964: 7
[7]  Meyers M A, Vˉohringer O, Lubarda V A. Acta Mater, 2001; 49: 4025
[8]  Harding J. Proc R Soc London, 1967; 299A: 464
[9]  Bolling G F, Richman R H. Acta Metall, 1965; 13: 709
[10]  Chen M, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[11]  Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[12]  Wu X L, Ma E. Appl Phys Lett, 2006; 88: 195
[13]  Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[14]  Meyers M A, Andrade U R, Chokshi A H. Metall Mater Trans, 1995; 26A: 2881
[15]  Levine E D. Trans Met Soc AIME, 1996; 236: 1558
[16]  Song S G, GrayIII G T. Acta Metall Mater, 1995; 43: 2325
[17]  Christan J W, Mahajan S. Prog Mater Sci, 1995; 39: 84
[18]  Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[19]  Hirth J P, Lothe J. Theory of Dislocations. 2nd ed, Malabar, UK: Krieger Publishing, 1992: 650
[20]  Laird C, Stanzl S, de La Veaux R, Buchinger L. Mater Sci Eng, 1986; 80: 143
[21]  Xiao L, Kuang Z B. Acta Mater, 1996; 44: 3059
[22]  Bacon D J, Martin J W. Philos Mag, 1981; 43: 883
[23]  Lagerlf K P D, Castaing J, Pirouz P, Heuer A H. Philos Mag, 2002; 82: 2841
[24]  Xiao L, Umakoshi Y, Sun J. Metall Mater Trans, 2001; 32A: 2841
[25]  Yu Z T, Zhou L, Deng J, Gu H C. Rare Met Mater Eng, 1999; 28: 340
[26]  Nilsson J O. Scr Metall, 1983; 17: 593
[27]  Li X W, Wu X M, Wang Z G, Umakoshi Y. Metall Mater Trans, 2003; 34A: 307
[28]  Starke E A, Lutjering G Jr. Fatigue and Microstructure, Metals Park, OH: ASM, 1978: 14
[29]  Jouiad M, Clement N, Coujou A. Philos Mag, 1998; 77A:689
[30]  Heino S, Karlsson B. Acta Mater, 2001; 49: 353
[31]  Steffens Th, Schwink Ch, Korner A, Karnthaler H P. Philos Mag, 1987; 56: 161
[32]  Partridge P G. Metall Rev, 1967; 118: 175
[33]  Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[34]  Yoo M H, Wei C T. Philos Mag, 1966; 14: 573
[35]  Tomsett D I, Bevis A. Philos Mag, 1969; 19: 533
[36]  Yoo M H. Metall Trans, 1981; A12: 409
[37]  Ehab E D, Surya R K, Roger D D. Metall Mater Trans, 1999; 30A: 1223
[38]  Ayman A S, Surya R K, Roger D D. Scr Mater, 2002; 46: 419
[39]  Ayman A S, Surya R K, Roger D D. Acta Mater, 2003; 51: 4225
[40]  Mullins S, Mpatchett B. Metall Trans, 1981; 12A: 74
[41]  Akhtar A. Metall Trans, 1975; 6A: 1105
[42]  Beevers C J, Halliday M D. J Met Sci, 1969; 3: 74
[43]  Byrne J G. Deformation Twinning. Gainsville: AIME Conf, 1963: 397

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133