全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2010 

Ti36Zr40Ni20Pd4准晶的热稳定性与室温储氘性能

DOI: DOI:10.3724/SP.J.1037.2009.00821, PP. 629-633

Keywords: Ti-Zr-Ni-Pd合金,准晶,,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Ti40Zr40Ni20准晶合金中掺Pd制备了Ti36Zr40Ni20Pd4准晶合金,利用X射线衍射(XRD)、金相(OM)、光电子能谱(XPS)、气固反应等对其组织结构和吸氘特性进行了研究.结果表明,在吸铸态下该合金形成了二十面体准晶相,准晶格常数为0.5174nm.其热力学稳定性较差,约400℃时转变为tI-Zr2Ni与C14-TiZrNiPd晶体相.室温下,其吸氘能力为11.0mmol/g(相当于2.2%的吸氢质量分数),吸氘速率达到0.030s-1,准晶结构不变但准晶格膨胀5.5%.添加的Pd起到催化作用,与初始合金相比,Ti36Zr40Ni20Pd4准晶合金的活化与储氘能力明显提高.

References

[1]  Bogdanovic B, Schwickardi M. Appl Phys, 2001; 72A: 221
[2]  Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002; 420: 302
[3]  Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. Nat Mater, 2008; 7: 138
[4]  Feng K M. Chin Nucl Power, 2009; 2: 212
[5]  (冯开明. 中国核电, 2009; 2: 212)
[6]  Gibbons P C, Hennig R G, Huett V T, Kelton K F. J Non-Cryst Solids, 2004; 334: 461
[7]  Kelton K F, Hartzell J J, Hennig R G, Huett V T, Takasaki A. Philos Mag, 2006; 86: 957
[8]  Liu B Z, Liu D M, Wu Y M, Li L Q, Wang L M. Int J Hydro Energy, 2007; 32: 2429
[9]  Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 162: 713
[10]  Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 159: 1458
[11]  Liu B Z, Wu Y M, Wang L M. Int J Hydrogen Energy, 2006; 31: 1394
[12]  Liu B Z, Wu Y M, Wang L M. Rare Met, 2007; 26: 440
[13]  Takasaki A, Huett V T, Kelton K F. J Non-Cryst Solids, 2004; 334: 457
[14]  Takasaki A, Kelton K F. Int J Hydrogen Energy, 2006; 31: 183
[15]  Hennig R G, Majzoub E H, Carlsson A E, Kelton K F, Henley C L, Yelon W B, Misture S. Mater Sci Eng, 2000; 294A: 361
[16]  Kim J Y, Hennig R, Huett V T, Gibbons P C, Kelton K F. J Alloys Compd, 2005; 404: 388
[17]  Huang H G, Dong P, Yin C, Zhang P C, Bai B, Dong C. Int J Hydrogen Energy, 2008; 33: 722
[18]  Huang H G, Li R, Yin C, Zheng S T, Zhang P C. Int J Hydrogen Energy, 2008; 33: 4607
[19]  Liu B Z, Liu J J, Mi G F, Zhang Z, Wu Y M, Wang L M. J Alloys Compd, 2009; 475: 881
[20]  Liu B Z, Zhang Y D, Mi G F, Zhang Z, Wang L M. Int J Hydrogen Energy, 2009; 34: 6925
[21]  Huang H G, Yin C, Wu J, Zhang P C. Chin J Nonferrous Met, 2008; 18: 108
[22]  (黄火根, 银陈, 吴江, 张鹏程. 中国有色金属学报, 2008; 18: 108)
[23]  Cahn J W, Shechtman D, Gratias D. J Mater Res, 1986; 1: 13
[24]  Qiang J B, Wang Y M, Wang D H, Dong C. Rare Met Mater Eng, 2004; 33: 949
[25]  (羌建兵, 王英敏, 王德和, 董闯. 稀有金属材料与工程, 2004; 33: 949)
[26]  Huang H G, Jia J P, Li R. Acta Metall Sin, 2009; 45: 1272
[27]  (黄火根, 贾建平, 李嵘. 金属学报, 2009; 45: 1272)
[28]  Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227
[29]  Huang L J, Yu B X, Gao S J. Met Funct Mater, 1998; 5: 124
[30]  (黄利军, 虞炳西, 高树浚. 金属功能材料, 1998; 5: 124)
[31]  Wang W W, Long X G. J Nucl Radiochem, 2007; 29: 80
[32]  (王伟伟, 龙兴贵. 核化学与放射化学, 2007; 29: 80)
[33]  Coddens G, Viano A M, Gibbons P C, Kelton K F, Kramer M J. Solid State Comm, 1997; 104: 179
[34]  Faust K R, Pfitsch D W, Stojanovich N A, McDowell A F, Adolphi N L, Majzoub E H, Kim J Y, Gibbons P C, Kelton K F. Phys Rev, 2000; 62B: 11444

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133