全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2011 

孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟

DOI: 10.3724/SP.J.1037.2010.00422, PP. 129-139

Keywords: 多孔NiTi形状记忆合金,B2-R相变,生长动力学,相场法,形貌演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了适用于含孔隙NiTi合金中B2-R相变的相场模型,并用该相场模型研究了多孔NiTi合金中B2-R转变的微观组织演化过程以及孔隙率和孔尺寸对R相变体生长动力学行为的影响.多孔NiTi合金中R相变体以相互协调的方式形成“带状”的三维结构和“鱼骨”状的二维组织,变体之间形成的孪晶面包括{101}B2和{001}B22种,4组变体相交于B2;这些结果与致密NiTi合金B2-R相变过程相同.多孔NiTi合金中R相优先在孔周围形核,且较大的孔周围有较多的变体形核;R相变体的平均尺寸随孔隙率增大而逐渐减小,随孔径增大而增加;相对于规则圆孔,不规则孔隙可导致R相变体尺寸略微减小;变体的尺寸均匀性则随孔隙率增大而提高,但对孔径大小和孔形状不敏感;孔隙数量越多且孔径越小,则B2-R转变越倾向于产生均匀而细密的R相组织.

References

[1]  Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020
[2]  Bansiddhi A, Sargeant T D, Stupp S I, Dunand D C. Acta Biomater, 2008; 4: 773
[3]  Kim J I, Li Y, Miyazaki S. Acta Mater, 2004; 52: 487
[4]  Dautovich D P, Purdy G R. Can Metall Q, 1965; 4: 129
[5]  Sandrock G D, Perkins A J, Hehemann R F. Metall Mater Trans, 1971; 2B: 2769
[6]  Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 9
[7]  Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 31
[8]  Lin H C,Wu S K, Chou T S, Kao H P. Acta Metall Mater, 1991; 39: 2069
[9]  Miyazaki S, Igo Y, Otsuka K. Acta Metall, 1986; 34: 2045
[10]  Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53
[11]  Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525
[12]  Bataillard L, Bidaux J E, Gotthardt R. Philos Mag, 1998; 78A: 327
[13]  Stroz D, Kwarciak J, Morawiec H. J Mater Sci, 1988; 23: 4127
[14]  Allafi J K, Ren X, Eggeler G. Acta Mater, 2002; 50: 793
[15]  Yuan B, Zhang X P, Chung C Y, Zhu M. Mater Sci Eng, 2006; A438-440: 585
[16]  Wu S L, Liu X M, Chu P K, Chuang C Y, Chu C L, Yeung K W K. J Alloys Compd, 2008; 449: 139
[17]  Wang Y, Khachaturyan A G. Acta Mater, 1997; 45: 759
[18]  Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley-Interscience, 1983: 213
[19]  Man J, Zhang J H, Rong Y H. Acta Metall Sin, 2010; 46: 775
[20]  (满 蛟, 张骥华, 戎咏华. 金属学报, 2010; 46: 775)
[21]  Artemev A, Wang Y, Khachaturyan A G. Acta Mater, 2000; 48: 2503
[22]  Jin Y M, Artemev A, Khachaturyan A G. Acta Mater, 2001; 49: 2309
[23]  Wang Y, Li J. Acta Mater, 2010; 58: 1212
[24]  Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 84
[25]  (柯常波, 马骁, 张新平. 金属学报, 2010; 46: 84)
[26]  Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511
[27]  Miyazaki S, Wayman C M. Acta Metall, 1998; 36: 181
[28]  Li D S, Zhang Y P, Zhang X P. J Alloys Compd, 2009; 474: L1
[29]  Wang Y U. Acta Mater, 2006; 54: 953
[30]  Wang Y, Ren X, Otsuka K, Saxena A. Acta Mater, 2008; 56: 2885
[31]  Man J, Zhang J H, Rong Y H. Appl Phys Lett, 2010; 96: 131904
[32]  Bhattacharya K, Kohn R V. Acta Mater, 1996; 44: 529
[33]  Wagner M F, Windl W. Acta Mater, 2008; 56: 6232
[34]  Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316
[35]  Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023
[36]  Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029
[37]  Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46: 2983
[38]  Fukuda T, Saburi T, Doi K, Nenno S. Mater Trans JIM, 1992; 33: 271
[39]  Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 921
[40]  (柯常波, 马骁, 张新平. 金属学报, 2010; 46: 921)
[41]  Ren X, Wang Y, Otsuka K, Lloveras P, Castan T, Porta M, Planes A, Saxena A. MRS Bull, 2009; 34: 838
[42]  Ren X, Wang Y, Zhou Y M, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X D. Philos Mag, 2010; 90: 141

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133