全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为

DOI: 10.3724/SP.J.1037.2013.00090, PP. 675-681

Keywords: 高放废物,Ti,缝隙腐蚀,温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用动电位极化曲线、电化学阻抗谱、电偶电流监测及恒电位极化等电化学方法研究了温度和Cl-浓度对Grade-2Ti在模拟高放废物处置环境中缝隙腐蚀行为的影响.结果表明,浸泡初期,带缝隙Ti电极在25-95℃时均呈现钝化特征.随浸泡时间延长,缝隙内介质环境侵蚀性增强,诱发Ti缝隙腐蚀.随着温度的升高和Cl-浓度的增加,电偶电流增大,Ti的耐缝隙腐蚀性能下降.Ti缝隙腐蚀各阶段转变的临界温度随着Cl-浓度和外加电位的增加而降低.由于发生阳极活性溶解,缝隙口处金属被严重破坏.

References

[1]  Lee S G, Solomon A A. Mater Sci Eng, 2006; A434: 114
[2]  Su R, Cheng Q F, Wang J, Zhao H G, Guo Y H, Chen W M, Jin Y X. World Nucl Geosci, 2011; 28: 45
[3]  (苏锐, 程琦福, 王驹, 赵宏刚, 郭永海, 陈伟明, 金远新. 世界核地质科学, 2011; 28: 45)
[4]  Wang J, Chen W M, Su R, Guo Y H, Jin Y X. Chin J Rock Mech Eng, 2006; 25: 649
[5]  (王驹, 陈伟明, 苏锐, 郭永海, 金远新. 岩石力学与工程学报, 2006; 25: 649)
[6]  Bennett D G, Gens R. J Nucl Mater, 2008; 379: 1
[7]  Rempe N T. Prog Nucl Energy, 2007; 49: 365
[8]  Chapman N, Hooper A. Proc Geologist Assoc, 2012; 123: 46
[9]  Feron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[10]  Johnson L H, Shoesmith D W, Ikeda B M, King F. Mater Res Soc Symp Proc, 1992; 257: 439
[11]  Shoesmith D W, Hocking W H, Ikeda B M, King F, No$\ddot{\rm e$l J J, Sunder S. Can J Chem, 1997; 75: 1566
[12]  Nakayama G, Sakakibara Y, Taniyama Y, Cho H, Jintoku T, Kawakami S, Takemoto M. J Nucl Mater, 2008; 379: 174
[13]  Nishimura T. J Nucl Mater, 2009; 385: 495
[14]  He X, Noel J J, Shoesmith D W. J Electrochem Soc, 2002; 149: B440
[15]  Mckay P, Mitton D B. Corrosion, 1985; 41: 52
[16]  He X, Noel J J, Shoesmith D W. Corrosion, 2004; 60: 378
[17]  Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1991; 212: 261
[18]  Tsujikawa S, Kojima Y. Mater Res Soc Symp Proc, 1993; 294: 311
[19]  Yan L, Noel J J, Shoesmith D W. Electrochim Acta, 2011; 56: 1810
[20]  Yokoyama K, Ogawa T, Asaoka K, Sakai J. Mater Sci Eng, 2004; A384: 19
[21]  Nishimura R, Shirono J, Jonokuchi A. Corros Sci, 2008; 50: 2691
[22]  Abdulsalam M I. J Mater Eng Perform, 2007; 16: 736
[23]  Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716
[24]  Rajendran N, Nishimura T. Mater Corros, 2007; 58: 334
[25]  Han D, Jiang Y M, Shi C, Deng B, Li J. J Mater Sci, 2012; 47: 1018
[26]  Han D, Jiang Y M, Deng B, Zhang L, Gao J, Tan H, Li J. Corrosion, 2011; 67: 025004-1
[27]  Pickering H W. Corros Sci, 1989; 29: 325
[28]  Al-Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420
[29]  Yan M C, Weng Y J. J Chin Soc Corros Prot, 2004; 24: 95
[30]  (闫茂成, 翁永基. 中国腐蚀与防护学报, 2004; 24: 95)
[31]  Heppner K L, Evitts R W, Postlethwaite J.J Electrochem Soc, 2005; 152: B89
[32]  Brigham R J.Corros Sci, 1992; 33: 799
[33]  Brigham R J.Corros Sci, 1988; 28: 57
[34]  Pickering H W. J Electrochem Soc, 2003; 150: K1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133