全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

前躯体组织对C—Mn—Si钢组织特征及力学行为的影响

DOI: 10.3724/SP.J.1037.2013.00301, PP. 1558-1566

Keywords: IQ&,P工艺,多相钢,残余奥氏体,瞬时加工硬化指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了不同的前躯体组织对于经临界区再加热—淬火—中温配分(IQ&P)处理所得的0.22C—1.9Mn—1.32Si多相钢的组织形貌和力学行为的影响.相同的热处理工艺参数下,采用前躯体为马氏体(M)的组织设计倾向于在多相钢中获得板条状的铁素体和薄膜状(或短针状)的残余奥氏体;而采用前躯体为贝氏体—铁素体(B—F)的组织设计则倾向于在多相钢中获得块状的铁素体和近颗粒状的残余奥氏体.在本工作所用IQ&P工艺下,B—F前躯体多相钢尽管抗拉强度高达976MPa,但其延伸率只有26.7%,使得其强塑积仅仅只有26GPa?%;而采用M前躯体设计可以使钢获得强度和塑性的优良结合,其强塑积超过31GPa?%.就均匀变形阶段的加工硬化行为而言,B—F前躯体多相钢尽管具有较高的加工硬化指数,但其组织中的残余奥氏体稳定性较差,因而瞬时加工硬化指数—真应变曲线的波动性很大,随真应变的增大在外观上呈锯齿状;而M前躯体多相钢尽管加工硬化指数略低,但其组织中的残余奥氏体具有较高的稳定性,因而瞬时加工硬化指数—真应变曲线较为平滑,随真应变的增大呈逐次升高的趋势.产生上述不同力学行为的原因与钢中残余奥氏体和基体组织的形貌、比例和分布状态均有关,而上述因素从根本上又取决于不同前驱体自身的组织形貌与微观结构特征.

References

[1]  Speich G R, Demarest V A, Miller R L.Metall Trans, 1981; 12A: 1419
[2]  Takashi F, Hirofumi M, Michio E, Hiroshi T, Kazuo K, Osamu A, Teruaki Y.Trans ISIJ, 1981; 21: 812
[3]  Matsumura O, SakumaY, Takechi H. Scr Metall, 1987; 21: 1301
[4]  Matsumura O, SakumaY, Takechi H. ISIJ Int, 1992; 32: 1014
[5]  Sugimoto K, Misu M, Kobayashi M, Shirasawa H.ISIJ Int, 1993; 33: 775
[6]  Speer J G, Matlock D K, De Cooman B C, Schroth J G.Acta Mater, 2003; 51: 2611
[7]  Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Curr Opin Solid State Mater Sci, 2004; 8: 219
[8]  Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G.Mater Sci Eng, 2006; A438—440: 25
[9]  De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G.Metall Mater Trans, 2008; 39A: 2586
[10]  Maruyama H.J Jpn Soc Heat Treat, 1977; 17: 198
[11]  Nishiyama Z. Martensitic Transformations. New York: Academic Press, 1978: 60
[12]  Sugimoto K, Usui N, Kobayashi M, Hashimoto S.ISIJ Int, 1992; 32: 1311
[13]  Chiang J, Lawrence B, Boyd J D, Pilkey A K.Mater Sci Eng, 2011; A528: 4516
[14]  Santofimia M J, Zhao L, Sietsma J.Metall Mater Trans, 2009; 40A: 46
[15]  Sakuma Y, Matlock D K, Krauss G.Metall Trans, 1992; 23A: 1221
[16]  Mahieu J, Maki J, De Cooman B C, Claessens S.Metall Mater Trans, 2002; 33A: 2573
[17]  Bai D Q, Chiro A D, Yue S.Mater Sci Forum, 1998; 284—286: 253
[18]  Wang J, Van Der Zwaag S.Metall Mater Trans, 2001; 32A: 1527
[19]  Pereloma E V, Timokhina I B, Hodgson P D.Mater Sci Eng, 1999; 273—275: 448
[20]  Baik S C, Park S H, Kwon O, Kim D I, Oh K H.ISIJ Int, 2006; 46: 599
[21]  Thierry I, Jos$\acute{\rm e$e D, Audrey C, Christopher O.Steel Res, 2002; 6—7: 218
[22]  Kwon E P, Fujieda S, Shinoda K, Suzuki S.Mater Sci Eng, 2011; A528: 5007
[23]  Sugimoto K I, Misu M, Kobayashi M, Shirasawa H.ISIJ Int, 1993; 33: 775
[24]  Liu H P, Lu X W, Jin X J, Dong H, Shi J.Scr Mater, 2011; 64: 749
[25]  Paravicini B E, Santofimia M J, Zhao L, Sietsma J, Anelli E.Mater Sci Eng, 2013; A559: 486
[26]  Santofimia M J, Nguyen—Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J.Mater Sci Eng, 2010; A527: 6429
[27]  Kim S J, Lee C G, Choi I, Lee S.Metall Mater Trans, 2001; 32A: 505
[28]  Ren Y Q, Xie Z J, Shang C J.Acta Metall Sin, 2012; 48: 1074
[29]  (任勇强, 谢振家, 尚成嘉.金属学报, 2012; 48: 1074)
[30]  Dieter G E. Mechanical Metallurgy. 2nd Ed., New York: McGraw—Hill Book Company, 1988: 87
[31]  Jacques P, Cornet X, Harlet P, Ladri$\grave{\rm e$re J, Delannay F.Metall Mater Trans, 1998; 29A: 2383
[32]  Yakubovsky O, Fonstein N, Bhattacharya D. In: De Cooman B C ed.,Proceedings Conference Trip—Aided High Strength Ferrous Alloys,Aachen: Wissenschaftsverlag Mainz Gmbh, 2002: 263
[33]  Ryde L.Mater Sci Technol, 2006; 22: 1297
[34]  Xiong X C, Chen B, Huang M X, Wang J F, Wang L.Scr Mater, 2013; 68: 321
[35]  Tsukatani I, Hashimoto S I, Inoue T.ISIJ Int, 1991; 31: 992

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133