全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响

DOI: 10.3724/SP.J.1037.2013.00709, PP. 531-539

Keywords: 高强钢,双相区保温,Mn配分,C配分,残余奥氏体,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用双相区保温+奥氏体化淬火+低温退火的热处理工艺,研究了合金元素配分行为对C-Si-Mn系高强钢微观组织和力学性能的影响.结果表明,在760℃随着保温时间的延长,双相区中奥氏体相的体积分数逐渐增多直至达到饱和,而铁素体向奥氏体扩散的Mn元素含量也逐渐增多直至在两相间达到化学势平衡,后加热至930℃保温120s,再淬火至220℃,配分过程中发生了C从马氏体向奥氏体中的扩散偏聚.经该工艺处理后实验用钢的抗拉强度为1310MPa,延伸率可达12%,强塑积达到15720MPa·%,相比传统淬火+碳配分工艺,双相区保温+奥氏体化淬火+低温退火的热处理工艺过程中Mn配分和C配分共同作用能够显著提高钢中残余奥氏体的含量和稳定性,从而提高高强钢的室温成形能力.

References

[1]  De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008, 39A: 2586
[2]  Dong X C, Zhang X, Chen Y Q. Iron Steel Vanadium Titanium, 2011; 32: 62(董现春, 张 熹, 陈延清. 钢铁钒钛, 2011, 32: 62)
[3]  Zhu B K, Li S B, Zhou H, Yang P. Welding Joining, 2007; (4): 40(朱丙坤, 李少兵, 周 浩, 杨 澍. 焊接, 2007; (4): 40)
[4]  Saleh M H, Prietner R. Mater Proc Technol, 2001; 113: 587
[5]  Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K. ISIJ Int, 2011; 51: 818
[6]  Lee S, Lee S J, De Cooman B C. Sci Mater, 2011; 65: 225
[7]  Lee S J, Lee S, De Cooman B C. Sci Mater, 2011; 64: 649
[8]  Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[9]  Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141
[10]  Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014
[11]  Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570
[12]  Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[13]  Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319-321: 246
[14]  Barnett M R. Mater Sci Eng, 2007; A464: 1
[15]  Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007; 539-543: 4476
[16]  Andrade H L, Akben M G, Jonas J J. Metall Trans, 1983; 14A: 1967
[17]  Hashimoto S, Ikeda S, Sugimoto K I, Miyake S. ISIJ Int, 2004; 44: 1590
[18]  Speer J G, Matlock D K, De Cooman B C, Schroch J G. Acta Mater, 2003; 51: 2611
[19]  Edmonds D V, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[20]  De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 798
[21]  Speer J G, Rizzo F C, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417
[22]  Matlock D K, Br?utigam V E, Speer J G. Mater Sci Forum, 2003; 426: 1089
[23]  Xu Z Y. Mater Sci Forum, 2007; 561-565: 2283
[24]  Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261
[25]  Zhong N. PhD Dissertation, Shanghai Jiao Tong University, 2009(钟 宁. 上海交通大学博士学位论文, 2009)
[26]  Krauss G. In: Rohatgi P K, Yust C S eds., Tribology of Composite Materials, Materials Park, Ohio: ASM International, 1990: 56
[27]  Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[28]  Fan X. Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159(范 雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133