全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

镍基Inconel-718合金TIG焊部分熔化区组织变化*

DOI: 10.11900/0412.1961.2013.00753, PP. 1003-1010

Keywords: 镍基Inconel-718合金,PMZ,偏析,液膜,树枝晶

Full-Text   Cite this paper   Add to My Lib

Abstract:

以轧制态、铸态、铸后均匀化三种状态的Inconel-718镍基合金薄板为对象,进行钨极氩弧焊(TIG)接头部分熔化区(PMZ)的研究.通过OM,SEM,EDS等手段观测不同焊接线能量下PMZ的微观组织.通过EDS测得晶内奥氏体、偏析区、Laves相的合金元素含量后,采用热力学软件Themo-Calc计算其理论固液相线温度,比较当母材状态不同时焊接接头PMZ各相的液化及凝固温度,分析液膜存在的温度范围大小.结果表明,Inconel-718镍基合金TIG焊接接头PMZ存在微观组织遗传性,铸态、铸后均匀化接头PMZ中仍然保持树枝晶的结构特征,而轧制态接头PMZ中仍是等轴晶.接头PMZ中皆析出链状Laves和颗粒状MC相,母材中原有偏析区消失.铸态母材固液相线间距最大,铸后均匀化的次之,轧制态的最小.当母材状态、几何尺寸相同时,随着焊接线能量的增加,PMZ宽度增大.当焊接线能量相同时,铸态PMZ宽度大于铸后均匀化和轧制态PMZ宽度.

References

[1]  Antonsson T, Fredriksson H. Metall Mater Trans, 2005; 36B: 85
[2]  Manikandan S G K, Sivakumar D, Rao K P, Kamaraj M. J Mater Process Technol, 2014; 214: 358
[3]  El-Bagoury N, Omar A A, Ogi K. Metall Microstr Anal, 2012; 1: 35
[4]  Moosavy H N, Aboutalebi M, Seyedein S, Goodarzi M, Mapelli C. Mater Sci Technol-Lond, 2013; 30: 339
[5]  Moosavy H N, Aboutalebi M R, Seyedein S H, Goodarzi M, Khodabakhshi M, Mapelli C, Barella S. Opt Laser Technol, 2014; 57: 12
[6]  Osoba L, Gao Z, Ojo O. J Metall Eng, 2013; 2: 88
[7]  Idowu O A, Ojo O A, Chaturvedi M C. Mater Sci Eng, 2007; A454: 389
[8]  Hong J K, Park J H, Park N K, Eom I S, Kim M B, Kang C Y. J Mater Process Technol, 2008; 201: 515
[9]  Odabasi A, Unlu N, Goller G, Eruslu M N. Metall Mater Trans, 2010; 41A: 2357
[10]  Huang X, Richards N L, Chaturvedi M C. Mater Manuf Process, 2004; 19: 285
[11]  Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A. J Mater Sci, 2009; 44: 4557
[12]  Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 609
[13]  Valdes J R, Kim D E, Shang S L, Liu X B, King P, Liu Z K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G eds., Superalloys 2008, Woodard: Wiley, 2008: 333
[14]  Mathon M, Connétable D, Sundman B, Lacaze J. Computer Coupling Phase Diagrams Thermochem, 2009; 33: 136
[15]  Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken: Wiley, 2009: 69
[16]  Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 733
[17]  Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2013; 29: 43
[18]  Saunders N, Fahrmann M, Small C J. In: Pollock T M, Kissinger R D, Bowman R D eds., Superalloys 2000, Champion: The Minerals, Metals and Materials Society, 2000: 803
[19]  Tancret F. Comput Mater Sci, 2007; 41: 13
[20]  Ojo O A, Tancret F. Comput Mater Sci, 2009; 45: 388
[21]  Fu S H, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2009; A499: 215
[22]  Wang L, Li C Q, Dong J X, Zhang M C. Chem Eng Commun, 2009; 196: 754
[23]  Wang L, Yijun Y, Dong J X, Zhang M C. Chem Eng Commun, 2010; 197: 1571
[24]  Wang L, Gong H, Zhao H F, Dong J X, Zhang M C. China Foundry, 2012; 9: 263
[25]  Wang L, Dong J X, Tian Y L, Zhang L. J Univ Sci Technol, 2008; 15B: 594
[26]  Ojo O A. Mater Sci Technol-Lond, 2007; 23: 1149
[27]  Chintababu U, Chary V R, Gupta S P. Can Metall Quarterly, 2007; 46: 175

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133