全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*

DOI: 10.11900/0412.1961.2013.00760, PP. 913-920

Keywords: 高Ti微合金钢,回火温度,冲击功,塑性,析出相

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用TEM,SEM及物理化学相分析法,研究了回火温度对高Ti微合金直接淬火高强钢显微组织和力学性能的影响.结果表明,随着回火温度的升高,抗拉曲线出现明显的转折点,抗拉强度先降低后升高,而屈服强度缓慢升高.回火温度为600℃时,实验钢具有最佳的综合力学性能;抗拉强度为1043MPa,屈服强度为1020MPa,延伸率为16%,-40℃冲击功为67.7J.其主要原因是600℃时,纳米级的析出相数量最多,体积分数最大,分布最均匀.600℃回火时,实验钢的固溶强化和沉淀强化的强度增量分别约为149.82和171.72MPa.

References

[1]  Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 65 (雍岐龙, 马鸣图, 吴宝榕. 微合金钢—物理和力学冶金. 北京: 机械工业出版社, 1989: 65)
[2]  Qian Y J, Yu W, Wu H B, Yang Y H. J Univ Sci Technol Beijing, 2010; 32: 509 (钱亚军, 余 伟, 武会宾, 杨跃辉. 北京科技大学学报, 2010; 32: 509)
[3]  Lu F, Kang J, Wang C, Wang Z D, Wang G D. Iron Steel, 2012; 47: 92 (卢 峰, 康 健, 王 超, 王昭东, 王国栋. 钢铁, 2012; 47: 92)
[4]  Chang W S. J Mater Sci, 2002; 37: 1973
[5]  Ghosh A, Mishra B, Das S. Mater Sci Eng, 2005; A396: 320
[6]  Chen C Y, Yen H W, Kao F H, Li W C, Huang S H. Mater Sci Eng, 2009; A499: 162
[7]  Park D B, Huh M Y, Shim J H, Shim J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[8]  Xu L S, Yu W, Lu X J. J Univ Sci Technol Beijing, 2012; 34: 125 (徐立善, 余 伟, 卢小节. 北京科技大学学报, 2012; 34: 125)
[9]  Han Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[10]  Xu L, Shi J, Cao W Q, Wang M Q, Hui W J, Dong H. J Mater Sci, 2011; 46: 3653
[11]  Funakawa Y, Shiozaki, Tomita K, Yamamoto T, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[12]  Chen C Y, Yen H W, Kao F H, Li W C, Huang S H. Mater Sci Eng, 2009; A499: 162
[13]  Park D B, Huh M Y, Shim J H, Shim J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[14]  Jha G, Das S, Siaha S, Lodh A, Haldar A. Mater Sci Eng, 2013; A561: 394
[15]  Kim Y W, Song S W, Seo S J, Hong S G, Lee C S. Mater Sci Eng, 2013; A565: 430
[16]  Mao X P, Huo X D, Sun X J, Chai Y Z. J Mater Process Technol, 2010; 210: 1660
[17]  Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[18]  Xu Z Y, Cao S W. Acta Metall Sin, 1987; 23: 477 (徐祖耀, 曹四维. 金属学报, 1987; 23: 477)
[19]  Gtossmann M A. Trans AIME, 1946; 167: 39
[20]  Klingler L J, Barnrtt W J, Frohmberg R P, Troiano A R. Trans ASM, 1954; 46: 1557
[21]  Guo K X. Acta Metall Sin, 1957; 2: 303 (郭可信. 金属学报, 1957; 2: 303)
[22]  Hyam E D, Nutting J. J Iron Steel Inst, 1956; 184: 148
[23]  Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[24]  Xu L S, Yu W, Lu X J. J Univ Sci Technol Beijing, 2012; 34: 125 (徐立善, 余 伟, 卢小节. 北京科技大学学报, 2012; 34: 125)
[25]  Han Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[26]  Xu L, Shi J, Cao W Q, Wang M Q, Hui W J, Dong H. J Mater Sci, 2011; 46: 3653
[27]  Funakawa Y, Shiozaki, Tomita K, Yamamoto T, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[28]  Jha G, Das S, Siaha S, Lodh A, Haldar A. Mater Sci Eng, 2013; A561: 394
[29]  Kim Y W, Song S W, Seo S J, Hong S G, Lee C S. Mater Sci Eng, 2013; A565: 430
[30]  Mao X P, Huo X D, Sun X J, Chai Y Z. J Mater Process Technol, 2010; 210: 1660
[31]  Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[32]  Xu Z Y, Cao S W. Acta Metall Sin, 1987; 23: 477 (徐祖耀, 曹四维. 金属学报, 1987; 23: 477)
[33]  Gtossmann M A. Trans AIME, 1946; 167: 39
[34]  Klingler L J, Barnrtt W J, Frohmberg R P, Troiano A R. Trans ASM, 1954; 46: 1557
[35]  Guo K X. Acta Metall Sin, 1957; 2: 303 (郭可信. 金属学报, 1957; 2: 303)
[36]  Hyam E D, Nutting J. J Iron Steel Inst, 1956; 184: 148
[37]  Liu Q D, Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)
[38]  Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 172 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 172)
[39]  Yong Q L, Sun X J, Zheng L, Yong X, Liu Z B, Chen M X. Sci Technol Innovation Herald, 2009; (8): 2 (雍岐龙, 孙新军, 郑 磊, 雍 兮, 刘振宝, 陈明昕. 科技创新导报, 2009; (8): 2)
[40]  Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A. Acta Mater, 1999; 47: 3475
[41]  Gladman T, Dulieu D, Mivor I D. Proceedings of Symposium on Microalloying 75, New York: Union Carbide Corp, 1976: 32
[42]  Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[43]  Gladman T. Mater Sci Technol, 1999; 15: 30
[44]  Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 65 (雍岐龙, 马鸣图, 吴宝榕. 微合金钢—物理和力学冶金. 北京: 机械工业出版社, 1989: 65)
[45]  Qian Y J, Yu W, Wu H B, Yang Y H. J Univ Sci Technol Beijing, 2010; 32: 509 (钱亚军, 余 伟, 武会宾, 杨跃辉. 北京科技大学学报, 2010; 32: 509)
[46]  Lu F, Kang J, Wang C, Wang Z D, Wang G D. Iron Steel, 2012; 47: 92 (卢 峰, 康 健, 王 超, 王昭东, 王国栋. 钢铁, 2012; 47: 92)
[47]  Chang W S. J Mater Sci, 2002; 37: 1973
[48]  Ghosh A, Mishra B, Das S. Mater Sci Eng, 2005; A396: 320
[49]  Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 172 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 172)
[50]  Yong Q L, Sun X J, Zheng L, Yong X, Liu Z B, Chen M X. Sci Technol Innovation Herald, 2009; (8): 2 (雍岐龙, 孙新军, 郑 磊, 雍 兮, 刘振宝, 陈明昕. 科技创新导报, 2009; (8): 2)
[51]  Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A. Acta Mater, 1999; 47: 3475
[52]  Gladman T, Dulieu D, Mivor I D. Proceedings of Symposium on Microalloying 75, New York: Union Carbide Corp, 1976: 32
[53]  Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[54]  Gladman T. Mater Sci Technol, 1999; 15: 30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133