全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Fe-Mn-Al轻质高强钢组织和力学性能研究*

DOI: 10.11900/0412.1961.2013.00850, PP. 897-904

Keywords: Fe-Mn-Al钢,轻质高强钢,固溶处理,位错滑移

Full-Text   Cite this paper   Add to My Lib

Abstract:

对热轧态与固溶处理后Fe-Mn-Al轻质高强钢进行力学性能检测及组织形貌观察,分析950~1100℃固溶处理工艺对其组织和力学性能的影响规律,根据真实应力-应变曲线和加工硬化曲线分析拉伸变形特征,对比拉伸变形前后微观组织形貌和XRD谱,研究其微观变形机理.研究结果表明,所设计的成分体系实验用钢,热轧后为奥氏体基体与少量带状铁素体的双相组织,密度为6.55g/cm3,达到了轻质高强的设计目标.固溶处理有利于奥氏体晶粒长大与带状铁素体的破碎分解,使钢板强度降低而塑性提高,但是过高的固溶温度会促进铁素体长大,使铁素体体积分数增大,钢的断后伸长率降低.1050℃固溶处理后Fe-Mn-Al钢抗拉强度为925.9MPa,断后伸长率为50.20%,强塑积为46.48GPa·%.连续的应变强化行为使得Fe-Mn-Al钢获得高强度与塑性的良好匹配,稳定硬化阶段应变范围越宽,断后伸长率越大;较高的层错能使其变形机理区别于TRIP和TWIP效应,变形后仍为奥氏体+铁素体双相组织,变形后奥氏体中可以观察到Taylor晶格、高密度位错墙以及微带结构,为明显的平面滑移特征.

References

[1]  Suh D W, Kim N J. Scr Mater, 2013; 68: 337
[2]  Hwang S W, Ji J H, Park K T. Mater Sci Eng, 2011; A528: 7267
[3]  Sahraoui T, Hadji M, Yahi M. Mater Sci Eng, 2009; A523: 271
[4]  Park K, Kim G, Kim S K, Lee S W, Hwang S W, Lee C S. Met Mater Int, 2010; 16: 1
[5]  Saeed-Akbari A, Imlau J, Prahl U, Bleck W. Metall Mater Trans, 2009; 40A: 3076
[6]  Torabinejad V, Zarei-Hanzaki A, Moemeni S, Imandoust A. Mater Des, 2011; 32: 5015
[7]  Frommeyer G, Brux U. Steel Res Int, 2006; 77: 627
[8]  Yoo J D, Park K. Mater Sci Eng, 2008; A496: 417
[9]  Yoo J D, Hwang S W, Park K. Mater Sci Eng, 2009; A508: 234
[10]  Yoo J D, Hwang S W, Park K T. Metall Mater Trans, 2009; 40A: 1520
[11]  Park K, Jin K G, Han S H, Hwang S W, Choi K, Lee S W. Mater Sci Eng, 2010; A527: 3651
[12]  Ding H, Yang P. J Mater Metall, 2010; 9: 265 (丁 桦, 杨 平. 材料与冶金学报, 2010; 9: 265)
[13]  Gutierrez I, Raabe D. Acta Metar, 2012; 60: 5791
[14]  Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483-484: 184
[15]  Poy N C. PhD Dissertation, University Ghent, 2004
[16]  Talonen J, Hanninen H. Acta Mater, 2007; 55: 6108
[17]  Paul H, Morawiec A, Driver J H, Bouzy E. Int J Plast, 2009; 25: 1588
[18]  Imandoust A, Zarei-Hanzaki A, Abedi H R. Scr Mater, 2012; 67: 995
[19]  Dong H, Sun X. Curr Opin Solid State Mater Sci, 2005; 9: 269
[20]  Hughes D A. Acta Metall Mater, 1993; 41: 1421
[21]  Park K. Scr Mater, 2013; 68: 375
[22]  Suh D W, Kim N J. Scr Mater, 2013; 68: 337
[23]  Park K, Kim G, Kim S K, Lee S W, Hwang S W, Lee C S. Met Mater Int, 2010; 16: 1
[24]  Torabinejad V, Zarei-Hanzaki A, Moemeni S, Imandoust A. Mater Des, 2011; 32: 5015
[25]  Choi K, Seo C, Lee H, Kim S K, Kwak J H. Scr Mater, 2010; 63: 1028
[26]  Kalashnikov I, Shalkevich A, Acselrad O, Peraira L C. J Mater Eng Perform, 2000; 9: 597
[27]  Umino R, Liu X, Sutou Y, Wang C, Ohnuma I, Kainuma R. J Phase Equilib Diff, 2006; 27: 54
[28]  Gutierrez I, Raabe D. Acta Metar, 2012; 60: 5791
[29]  Talonen J, Hanninen H. Acta Mater, 2007; 55: 6108
[30]  Paul H, Morawiec A, Driver J H, Bouzy E. Int J Plast, 2009; 25: 1588
[31]  Imandoust A, Zarei-Hanzaki A, Abedi H R. Scr Mater, 2012; 67: 995
[32]  Dong H, Sun X. Curr Opin Solid State Mater Sci, 2005; 9: 269
[33]  Hughes D A. Acta Metall Mater, 1993; 41: 1421
[34]  Park K. Scr Mater, 2013; 68: 375
[35]  Choi K, Seo C, Lee H, Kim S K, Kwak J H. Scr Mater, 2010; 63: 1028
[36]  Kalashnikov I, Shalkevich A, Acselrad O, Peraira L C. J Mater Eng Perform, 2000; 9: 597
[37]  Ma F C, Liu P, Li W, Feng W J, Wang L. Trans Mater Heat Treat, 2010; 31(9): 64 (马凤仓, 刘 平, 李 伟, 封为骏, 王 利. 材料热处理学报, 2010; 31(9): 64)
[38]  Bao W P, Zhao Y J, Xu L W, Xiong Z P, Ren X P. Heat Treat Met, 2010; 35(4): 33 (包卫平, 赵艳君, 许立伟, 熊志平, 任学平. 金属热处理, 2010; 35(4): 33)
[39]  Umino R, Liu X, Sutou Y, Wang C, Ohnuma I, Kainuma R. J Phase Equilib Diff, 2006; 27: 54

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133